Mars 2006

Devoir Maison nº 16 - Applications linéaires, matrices

Exercice -

A. Troesch

Soit T l'application de C^0 dans l'ensemble de toutes les fonctions qui à $f \in C^0$ associe la fonction T(f) définie par :

 $\forall x \in \mathbb{R}, (T(f))(x) = \int_0^x f(t) \sin(x - t) dt.$

1. (a) \mathcal{C}^0 est un sous-ensemble du \mathbb{R} -espace vectoriel $\mathbb{R}^{\mathbb{R}}$ des fonctions de \mathbb{R} dans \mathbb{R} . Par ailleurs, la fonction nulle est continue, donc $0 \in \mathcal{C}^0$. De plus, pour tout $\lambda \in \mathbb{R}$ et tout $f, g \in \mathcal{C}^0$, $\lambda f + g$ est continue, donc $\lambda f + g \in \mathcal{C}^0$. Ainsi, \mathcal{C}^0 est un sous-espace vectoriel de $\mathbb{R}^{\mathbb{R}}$.

De même, une combinaison linéaire de fonction deux fois dérivable de dérivée seconde continue est encore deux fois dérivable de dérivée continue, et $0 \in \mathcal{C}^2$. Ainsi, \mathcal{C}^2 est un sous-espace vectoriel de \mathcal{C}^2 .

(b) Soit f une fonction continue sur \mathbb{R} . Alors

$$\forall x \in \mathbb{R}, \quad T(f)(x) = \int_0^x f(t)\sin(x-t) \, dt = \int_0^x f(t)(\sin x \cos t - \cos x \sin t) \, dt$$
$$= \sin x \int_0^x \cos t f(t) \, dt - \cos x \int_0^x \sin t f(t) \, dt.$$

Or, pour toute fonction continue g sur \mathbb{R} , $x \mapsto \int_0^x g(t) dt$ est dérivable de dérivée $x \mapsto g(x)$. Ainsi, T(f) est dérivable, de dérivée :

$$\forall x \in \mathbb{R}, \quad T(f)'(x) = \cos x \int_0^x \cos t f(t) \, dt + \sin x \cos x f(x) + \sin x \int_0^x \sin t f(t) - \cos x \sin x f(x)$$
$$= \cos x \int_0^x \cos t f(t) \, dt + \sin x \int_0^x \sin t f(t).$$

Ainsi, T(f)' est encore dérivable, et :

$$\forall x \in \mathbb{R}, \quad T(f)''(x) = -\sin x \int_0^x \cos t f(t) \, dt + \cos^2(x) f(x) + \cos x \int_0^x \sin t f(t) \, dt + \sin^2(x)$$
$$= f(x) + \cos x \int_0^x \sin t f(t) \, dt - \sin x \int_0^x \cos t f(t).$$

Comme f est continue, et les intégrales également (elles sont dérivables) ainsi que les fonctions sin et cos on en déduit que T(f)'' est continue. Ainsi, $T(f) \in \mathcal{C}^2$.

(c) D'après la question précédente, T est une application de \mathcal{C}^0 dans \mathcal{C}^2 . Montrons que T est linéaire. Pour cela, soit $\lambda \in \mathbb{R}$ et $f, g \in \mathcal{C}^0$. Alors :

$$\forall x \in \mathbb{R}, T(\lambda f + g)(x) = \int_0^x (\lambda f(t) + g(t)) \sin(x - t) dt$$
$$= \lambda \int_0^x f(t) \sin(x - t) dt + \int_0^x g(t) \sin(x - t) dt = \lambda T(f) + T(g).$$

2. Dans la question 1b, on a obtenu, pour tout $f \in \mathcal{C}^0$:

$$\forall x \in \mathbb{R}, \ T(f)''(x) == f(x) + \cos x \int_0^x \sin t f(t) \, dt - \sin x \int_0^x \cos t f(t)$$
$$= f(x) + \int_0^x \sin(t - x) f(t) \, dt = f(x) - T(f)(x).$$

Ainsi, pour tout $f \in \mathcal{C}^0$, T(f) + (T(f))'' = f.

Soit f tel que T(f) = 0. Alors T(f)'' = 0, et par conséquent, f = T(f) + T(f)'' = 0. Ainsi, $Ker(f) = \{0\}$.

- 3. Soit $K = \{g \in \mathcal{C}^2 \mid g(0) = g'(0) = 0\}.$
 - (a) K est un sous-ensemble de \mathcal{C}^2 , et la fonction nulle est dans K. De plus, soit g et h deux fonctions de K, et $\lambda \in \mathbb{R}$. Alors $\lambda g + h \in \mathcal{C}^2$, et $(\lambda g + h)(0) = \lambda g(0) + h(0) = 0$, et $(\lambda g + h)'(0) = \lambda g'(0) + h'(0) = 0$. Ainsi, $\lambda g + h \in K$.

Par conséquent, K est un sev de \mathcal{C}^2

(b) Soit $f \in \mathcal{C}^0$. Alors:

$$T(f)(0) = \int_0^0 f(t)\sin(-t) dt = 0.$$

De plus,

$$T(f)'(0) = \cos 0 \int_0^0 \cos t f(t) dt + \sin 0 \int_0^0 \sin t f(t) = 0.$$

Ainsi, $T(f) \in K$. Par conséquent, Im $T \subset K$.

(c) Soit $g \in K$. Alors

$$\forall x \in \mathbb{R}, \quad T(g'')(x) = \int_0^x g''(t)\sin(x-t).$$

Intégrons par parties, en considérant les deux fonctions de classe C^1 , $t \mapsto g'(t)$ et $t \mapsto \sin(x-t)$, se dérivant en $t \mapsto g''(t)$ et $t \mapsto -\cos(x-t)$. Ainsi :

$$T(g'') = \int_0^x g'(t)\cos(x-t) dt - \left[g'(t)\sin(x-t)\right]_0^x = \int_0^x g'(t)\cos(x-t) dt.$$

Intégrons par parties, en considérant les deux fonctions de classe C^1 , $t \mapsto g(t)$ et $t \mapsto \cos(x-t)$, se dérivant en $t \mapsto g'(t)$ et $t \mapsto \sin(x-t)$. Ainsi :

$$\forall x \in \mathbb{R}, \ T(g'')(x) = -\int_0^x g(t)\sin(x-t)\,\mathrm{d}t + \left[g(t)\cos(x-t)\right]_0^x = -\int_0^x g(t)\sin(x-t)\,\mathrm{d}t = -T(g)(x) + g(x).$$

Par conséquent, T(g + g'') = T(g) + T(g'') = g. Par conséquent, tout g de K est dans l'image de T. Ainsi, Im g = K.

- 4. (a) T se restreint donc en une application linéaire de C^0 sur K. Cette application linéaire est injective d'après la question 2, et est surjective d'après la question 3b. Il s'agit donc d'un isomorphisme.
 - (b) Puisque pour tout $g \in K$, T(g+g'')=g, on en déduit que $T^{-1}(g)=g+g''$.
- 5. (a) Pour tout $x \in \mathbb{R}$,

$$T(s) = \int_0^x \sin(x - t) \sin t \, dt = \frac{1}{2} \int_0^x (\cos(2t - x) - \cos x) \, dt$$
$$= \frac{1}{4} \left[\sin(2t - x) \right]_0^x - \frac{1}{2} x \cos x$$
$$= \frac{1}{4} \sin x - \frac{1}{4} \sin(-x) - \frac{1}{2} x \cos x = \frac{1}{2} \sin x - \frac{1}{2} x \cos x.$$

(b) Il fallait lire f + f'' = s. Dans ce cas, s = T(s) + T(s)'', donc il suffit de prendre f = T(s).

Problème – Étude de séries de matrices

On définit, pour tout matrice $A \in \mathcal{M}_p(\mathbb{R})$ pour laquelle les séries convergent :

$$\exp(A) = \sum_{n=0}^{+\infty} \frac{A^n}{n!}, \qquad et \qquad \ln(A) = \sum_{n=1}^{+\infty} \frac{(-1)^{n+1} (A - I_p)^n}{n}.$$

2

Partie I - Premier exemple

$$\text{Soit } p \in \mathbb{N}^*, \, p \geqslant 2. \, \text{Soit } a \in \mathbb{R}. \, \text{On pose } A = \begin{pmatrix} 0 & a & 0 & \cdots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & & \ddots & \ddots & 0 \\ \vdots & & & \ddots & a \\ 0 & \cdots & \cdots & 0 \end{pmatrix} \in \mathcal{M}_p(\mathbb{R}).$$

1. (a) $A^0 = I_4$, $A^1 = A$, et:

(b) Ainsi, la somme $\sum \frac{A^n}{n!}$ est une somme finie, donc forcément convergente. Par conséquent, $\exp(A)$ existe, et :

$$\exp(A) = \sum_{n=0}^{3} \frac{A^n}{n!} = I_4 + A + \frac{1}{2}A^2 + \frac{1}{6}A^3 = \begin{pmatrix} 1 & 1 & \frac{1}{2} & \frac{1}{6} \\ 0 & 1 & 1 & \frac{1}{2} \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

(c) De la même façon, $\exp(-A)$ existe, et :

$$\exp(-A) = \sum_{n=0}^{3} \frac{(-A)^n}{n!} = I_4 - A + \frac{1}{2}A^2 - \frac{1}{6}A^3 = \begin{pmatrix} 1 & -1 & \frac{1}{2} & -\frac{1}{6} \\ 0 & 1 & -1 & \frac{1}{2} \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

(d) Le produit de $\exp(A)$ et $\exp(-A)$ donne :

$$\exp(A) \cdot \exp(-A) = \begin{pmatrix} 1 & 1 & \frac{1}{2} & \frac{1}{6} \\ 0 & 1 & 1 & \frac{1}{2} \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & -1 & \frac{1}{2} & -\frac{1}{6} \\ 0 & 1 & -1 & \frac{1}{2} \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} = I_4.$$

Ainsi, $\exp(-A)$ est l'inverse de $\exp(A)$. Ce n'est pas étonnant puisque une telle propriété provient pour les réels d'une étude complètement formelle des séries. La convergence des séries suffit à justifier une telle propriété. Ici, la convergence ne pose pas de problème, puisque les sommes sont finies.

(e) Soit $C = \exp(A) - I_4$. Alors:

(f) Donc la série $\sum \frac{(-1)^{n+1}C^n}{n}$ est finie, donc convergente, ce qui équivaut à l'existence de $\ln(\exp(A))$. Alors :

3

Encore une fois, ce résultat n'est pas étonnant puisque là encore, ce résultat complètement formel découle de l'étude des séries.

2. (a) Soit f l'application canoniquement associée à A, et soit (e_1, \ldots, e_n) la base canonique. Alors $f(e_1) = 0$, et pour tout $i \in [2, p]$, $f(e_i) = ae_{i-1}$. Par conséquent, en itérant f, pour tout $k \in [1, p-1]$,

$$\forall i \in [1, k], f^k(e_i) = 0$$
 et $\forall i \in [k+1, p], f^k(e_i) = a^k e_{i-k}$.

$$\text{On en d\'eduit que}: A^k = [f^k] = a^k \cdot \begin{pmatrix} 0 & \cdots & 0 & 1 & 0 & \cdots & 0 \\ & & & \ddots & \ddots & \vdots \\ \vdots & & \ddots & \ddots & \ddots & 0 \\ & & & & & 1 \\ \vdots & & & \ddots & & 0 \\ & & & & & \vdots \\ 0 & & & & \cdots & & 0 \end{pmatrix}.$$

Ainsi, il s'agit de la matrice constitué de a^k sur la k-ième diagonale au dessus de la diagonale principale, et de 0 ailleurs.

De même, si $k \ge p$, pour tout $i \in [1, p]$, $f(e_i) = 0$, donc $A^k = 0$.

(b) Par conséquent, la somme définissant $\exp(A)$ est finie, et donc convergente. Ainsi $\exp(A)$ existe, et :

$$\exp(A) = \sum_{k=0}^{p-1} \frac{A^k}{k!} = \begin{pmatrix} 1 & \frac{a}{1!} & \cdots & \frac{a^{p-1}}{(p-1)!} \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \frac{a}{1!} \\ 0 & \cdots & 0 & 1 \end{pmatrix}.$$

(c) De même, $\exp(-A)$ existe, et :

$$\exp(-A) = \sum_{k=0}^{p-1} \frac{(-A)^k}{k!} = \begin{pmatrix} 1 & -\frac{a}{1!} & \cdots & \frac{(-a)^{p-1}}{(p-1)!} \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & -\frac{a}{1!} \\ 0 & \cdots & 0 & 1 \end{pmatrix}.$$

Calculons le produit de $\exp(A)$ et $\exp(-A)$:

$$\exp(A)\exp(-A) = \sum_{k=0}^{p-1} \frac{A^k}{k!} \cdot \sum_{k=0}^{p-1} \frac{(-A)^k}{k!} = \sum_{\ell=0}^{2n-2} c_{\ell} A^{\ell},$$

où pour tout $\ell \in [0, 2n-2]$,

$$c_{\ell} = \sum_{\substack{i+j=\ell\\i\in[0,n-1]\\j\in[1,n-1]}} \frac{1}{i!} \cdot \frac{(-1)^{j}}{j!} = \frac{1}{\ell!} \sum_{\substack{i+j=\ell\\i\in[0,n-1]\\j\in[1,n-1]}} \binom{\ell}{j} \cdot (-1)^{j}.$$

Pour $\ell < n$, la condition sur i et j est automatiquement vérifiée, et on trouve :

$$c_{\ell} = \frac{1}{\ell!} \sum_{j=0}^{\ell} {\ell \choose j} \cdot (-1)^j = \frac{1}{\ell!} (1-1)^{\ell},$$

et par conséquent, $c_0 = 1$ et pour tout $\ell \in [1, n-1]$, $c_\ell = 0$.

De plus, pour tout $\ell \geqslant n, \, A^\ell = 0$. Par conséquent :

$$\exp(A) \exp(-A) = \sum_{\ell=0}^{n-1} c_{\ell} A^{\ell} = A^{0} = I_{n}.$$

Ainsi, $\exp(-A)$ est l'inverse de $\exp(A)$.

3. (a)
$$I_4 - A = \begin{pmatrix} 1 & -1 & 0 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$
. Inversons le système $AX = Y$.

Soit
$$X = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix}$$
 et $Y = \begin{pmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \end{pmatrix}$. Alors le système $AX = Y$ est :

$$\begin{cases} x_1 & -x_2 & = y_1 \\ x_2 & -x_3 & = y_2 \\ x_3 & -x_4 & = y_3 \end{cases} \iff \begin{cases} x_1 & = y_1 + y_2 + y_3 + y_4 \\ x_2 & = y_2 + y_3 + y_4 \\ x_3 & = y_3 + y_4 \\ x_4 & = y_4 \end{cases}$$

Par conséquent, $I_4 - A$ est inversible, et $(I_4 - A)^{-1} = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix}$.

(b) D'après les valeurs de A^2 , A^3 et A^n , $n \ge 4$, on a :

$$\sum_{n=0}^{+\infty} A^n = I_4 + A + A^2 + A^3 = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix} = (I_4 - A)^{-1}.$$

Ceci n'est pas étonnant, par analogie avec la formule $\frac{1}{1-x} = \sum_{n=0}^{+\infty} x^n$. On peut remarquer que :

$$(I_4 - A) \sum_{k=0}^{+\infty} A^k = (I_4 - A) \sum_{k=0}^{3} A^k = I_4 - A^4 = I_4.$$

4. (a) A est nilpotente puisque pour tout $k \geqslant p$, $A^k = 0$. Ainsi $\sum A^k$ est une somme finie donc convergente. Ainsi:

$$\sum_{k=0}^{+\infty} A^k = \sum_{k=0}^{p-1} = \begin{pmatrix} 1 & a & \cdots & a^{p-1} \\ 0 & \ddots & \ddots & & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & & \ddots & \ddots & a \\ 0 & \cdots & \cdots & 0 & 1 \end{pmatrix}.$$

(b) Il s'agit de l'inverse de $(I_p - A)$. En effet, on a une somme téléscopique :

$$(I_p - A) \sum_{k=0}^{n-1} A^k = I_n - A^n = I_n.$$

5

Ainsi,
$$(I_p - A)^{-1} = \sum_{n=0}^{+\infty} A^n = \sum_{n=0}^{p-1} A^n$$

Partie II - Deuxième exemple

On pose
$$A = \begin{pmatrix} -\frac{5}{3} & -\frac{2}{3} \\ -\frac{1}{3} & -\frac{4}{3} \end{pmatrix}$$
, $P = \begin{pmatrix} 2 & -1 \\ 1 & 1 \end{pmatrix}$ et $D = \begin{pmatrix} -2 & 0 \\ 0 & -1 \end{pmatrix}$.

1. (a) $\det(P) = 3 \neq 0$, donc P est inversible, et $P^{-1} = \frac{1}{3} \begin{pmatrix} 1 & 1 \\ -1 & 2 \end{pmatrix}$.

(b)
$$PDP^{-1} = \frac{1}{3} \begin{pmatrix} 2 & -1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} -2 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ -1 & 2 \end{pmatrix} = \frac{1}{3} \begin{pmatrix} -4 & 1 \\ -2 & -1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ -1 & 2 \end{pmatrix} = \frac{1}{3} \begin{pmatrix} -5 & -2 \\ -1 & -4 \end{pmatrix} = A.$$

- (c) Pour tout $n \in \mathbb{N}$, $D^n = \begin{pmatrix} (-2)^n & 0 \\ 0 & (-1)^n \end{pmatrix}$.
- (d) Le coefficient en position (1,1) de la somme définissant $\exp(D)$ est $\sum_{n=0}^{+\infty} \frac{(-2)^n}{n!}$. Cette somme converge, de somme e^{-2} .

Le coefficient en position (2,2) de la somme définissant $\exp(D)$ est $\sum_{n=0}^{+\infty} \frac{(-1)^n}{n!}$. Cette somme converge, de somme e^{-1} .

Les coefficients en position (1,2) et (2,1) sont nuls. Ainsi, les sommes sur chacun des coefficients convergent, donc $\exp(D)$ existe, et

$$\exp(D) = \begin{pmatrix} e^{-2} & 0\\ 0 & e^{-1} \end{pmatrix}.$$

(e) On a, pour tout $n \in \mathbb{N}$, $A^n = PDP^{-1}PDP^{-1} \cdots PDP^{-1} = PD^nP^{-1}$. Ainsi, pour tout $n \in \mathbb{N}$,

$$\sum_{k=0}^{n} \frac{A^k}{k!} = P\left(\sum_{k=0}^{n} D^n\right) P^{-1}.$$

Or, multiplier par une matrice revient à faire une combinaison linéaire des coefficients. Comme on a convergence coefficient par coefficient de la somme $\sum D^n$, il en est donc de même, d'après les règles sur les limites, de $P \cdot \sum D^n$, puis de $P(\sum D^n) P^{-1}$. Par conséquent, la somme définissant $\exp(A)$ converge, et :

$$\exp(A) = P \exp(D) P^{-1}.$$

- (f) Un calcul, qu'il faudrait préciser un peu, amène alors $\exp(A) = \frac{1}{3} \begin{pmatrix} 2e^{-2} + e^{-1} & 2e^{-2} 2e^{-1} \\ e^{-2} e^{-1} & e^{-2} + 2e^{-2} \end{pmatrix}$.
- 2. (a) On obtient de la même manière $\exp(-A) = P \exp(-D)P^{-1} = P \begin{pmatrix} e^2 & 0 \\ 0 & e \end{pmatrix} P^{-1} = \frac{1}{3} \begin{pmatrix} 2e^2 + e & 2e^2 2e \\ e^2 e & e^2 + 2e^2 \end{pmatrix}$.
 - (b) Un calcul un peu fastidieux mais sans difficulté amène $\exp(A) \exp(-A) = I_2$. Encore une fois, la conclusion, très étonnante, est que $\exp(-A)$ est l'inverse de $\exp(A)$.
- 3. On note $B = \exp(A)$. Notre but est de déterminer $\ln(B) = \ln(\exp(A))$.
 - (a) On a $B = \exp(A) = P \exp(D) P^{-1}$, donc $B I_2 = P(\exp D I_2) P^{-1}$. Ainsi, il suffit de poser

$$D' = exp(D) - I_2 = \begin{pmatrix} e^{-2} - 1 & 0 \\ 0 & e^{-1} - 1 \end{pmatrix}.$$

- (b) On a donc, pour tout $n \in \mathbb{N}$, $D^{n} = \begin{pmatrix} (e^{-2} 1)^n & 0 \\ 0 & (e^{-1} 1)^n \end{pmatrix}$
- (c) Or, puisque $|e^{-2} 1| < 1$ et $|e^{-1} 1| < 1$, les séries $\sum_{n=1}^{+\infty} \frac{(-1)^{n+1}}{n} (e^{-2} 1)^n$ et $\sum_{n=1}^{+\infty} \frac{(-1)^{n+1}}{n} (e^{-1} 1)^n$ convergent, respectivement vers $\ln(e^{-2}) = -2$ et $\ln(e^{-1}) = -1$. Par conséquent, $\ln(D' + I_2)$ existe, et

$$\ln(D' + I_2) = \begin{pmatrix} -2 & 0\\ 0 & -1 \end{pmatrix} = D.$$

(d) Comme plus haut, multiplier par une matrice ne change pas la convergence, donc la série définissant $\ln(B)$, obtenue en multipliant la série définissant $\ln(D' + I_2)$ par P à gauche et par P^{-1} à droite converge, d'où l'existence de $\ln(B)$, et comme précédemment,

$$\ln(\exp(A)) = \ln(B) = P \ln(D' + I_2)P^{-1} = PDP^{-1} = A.$$

Cela n'a plus de quoi nous étonner.