ECS 3/4 – Mathématiques

Correction du Devoir Surveillé n° 3 – Séries numériques

PROBLÈME - Équivalents et développements asymptotiques de séries liées aux diviseurs

On admet, dans l'ensemble du problème les deux résultats suivants :

$$\ln\left(1 + \frac{1}{n}\right) = \frac{1}{n} - \frac{1}{2n^2} + o\left(\frac{1}{n^2}\right) \qquad et \qquad \sum_{n=1}^{+\infty} \frac{1}{n^2} = \frac{\pi^2}{6}.$$
 (1)

Questions préliminaires

1. Soit $\varepsilon > 0$.

Puisque $a_n \sim b_n$, il existe une suite $(\lambda_n)_{n \in \mathbb{N}}$ et un entier N' tels que pour tout $n \geqslant N'$, $a_n = \lambda_n b_n$ et $\lim_{n \to +\infty} \lambda_n = 1$. Alors, par définition des limites,

$$\exists N \in \mathbb{N}, \ \forall k \geqslant N, \ 1 - \varepsilon \leqslant \lambda_k \leqslant 1 + \varepsilon.$$

Soit une telle valeur de N, qu'on peut choisir supérieure à N'. En multipliant pour tout $k \geqslant N$ cette inégalité par b_k , qui est positif, on obtient :

$$\forall k \geqslant N, (1-\varepsilon)b_k \leqslant \lambda_k b_k \leqslant (1+\varepsilon)b_k, \quad \text{soit}: \quad \forall k \geqslant N, (1-\varepsilon)b_k \leqslant a_k \leqslant (1+\varepsilon)b_k.$$

Soit $n \ge N$. Sommons ces inégalités (valides pour les indices considérés) sur tous les indices $k \ge n+1$ (les séries $\sum a_n$ et $\sum b_n$ étant convergentes, on peut considérer les sommes jusqu'à l'infini) :

$$(1-\varepsilon)\sum_{k=n+1}^{+\infty}b_k\leqslant \sum_{k=n+1}^{+\infty}a_k\leqslant (1+\varepsilon)\sum_{k=n+1}^{+\infty}b_k.$$

Conclusion: $\forall \varepsilon > 0, \ \exists N \in \mathbb{N}, \ \forall n \geqslant N, \ (1 - \varepsilon)s_n \leqslant r_n \leqslant (1 + \varepsilon)s_n.$

2. Si la suite $(b_n)_{n\in\mathbb{N}}$ est nulle à partir d'un certain rang (donc si $\exists N, \ \forall n \geqslant N, \ b_n = 0$), alors, avec les notations précédentes, pour tout $n \geqslant \max(N, N')$, $a_n = \lambda_n b_n = 0$. Alors, pour tout $n \geqslant \max(N, N')$, $r_n = s_n = 0$. On peut alors définir, $(\lambda'_n)_{n\geqslant \max(N,N')}$ en posant pour tout $n\geqslant \max(N,N')$, $\lambda'_n = 1$. On a alors:

$$\forall n \geqslant \max(N, N'), \ r_n = \lambda'_n s_n, \qquad \text{et} \qquad \lim_{n \to +\infty} \lambda'_n = 1.$$

Ainsi, $r_n \underset{+\infty}{\sim} s_n$. Remarquez qu'il s'agit du cas très particulier d'un équivalent à 0: seule les suites stationnaires de limite nulle sont équivalentes à 0.

Si la suite $(b_n)_{n\in\mathbb{N}}$ n'est pas nulle à partir d'un certain rang (c'est-à-dire stationnaire de valeur 0, ce qui n'empêche par que certains termes soient nuls), alors, comme elle est à termes positifs :

$$\forall n \in \mathbb{N}, \ \exists k > n, \ b_k > 0, \quad \text{donc} \quad \forall n \in \mathbb{N}, \ \sum_{k=n+1}^{+\infty} b_k > 0, \quad \text{soit} : \quad \forall n \in \mathbb{N}, s_n > 0.$$

Ainsi, on peut diviser pour tout $n \geqslant N$ l'inégalité de la question 1 par s_n . On obtient :

$$\forall \varepsilon > 0, \ \exists N \in \mathbb{N}, \ \forall n \geqslant N, \ (1 - \varepsilon) \leqslant \frac{r_n}{s_n} \leqslant (1 + \varepsilon).$$

Par définition des limites, on en déduit que $\lim_{n\to+\infty}\frac{r_n}{s_n}=1$, donc $r_n\sim s_n$.

Bilan: avant de diviser, assurez-vous toujours que ce par quoi vous divisez est non nul!

PARTIE I – Comportement à l'infini des sommes partielles et restes des séries de Riemann

1. Pour tout $k \geqslant a$, [k, k+1] est inclus dans le domaine de définition de f, et comme f y est décroissante, on a :

$$\forall k \geqslant a, \ \forall x \in [k, k+1], \ f(k+1) \leqslant f(x) \leqslant f(k).$$

La fonction f étant continue, elle est intégrable sur [k, k+1], et on peut donc intégrer l'inégalité précédente sur cet intervalle. Par la croissance de l'intégrale, on trouve :

$$\forall k \geqslant a, \int_{k}^{k+1} f(k+1) \, \mathrm{d}x \leqslant \int_{k}^{k+1} f(x) \, \mathrm{d}x \leqslant \int_{k}^{k+1} f(k) \, \mathrm{d}x \qquad \text{soit}: \qquad f(k+1) \leqslant \int_{k}^{k+1} f(x) \, \mathrm{d}x \leqslant f(k).$$

Soit $n\geqslant a$ et p>n. On peut sommer la première inégalité pour tout $k\in [n,p-1]$. On obtient :

$$\sum_{k=n}^{p-1} f(k+1) \leqslant \sum_{k=n}^{p-1} \int_{k}^{k+1} f(x) \, dx = \int_{n}^{p} f(x) \, dx,$$

d'après la relation de Chasles. En effectuant un changement d'indice, on obtient donc :

$$\sum_{k=n+1}^{p} f(k) \leqslant \int_{n}^{p} f(x) \, \mathrm{d}x.$$

De même, on somme la deuxième inégalité pour tout $k \in [n+1, p]$. On obtient :

$$\sum_{k=n+1}^{p} f(k) \geqslant \sum_{k=n+1}^{p} \int_{k}^{k+1} f(x) \, dx = \int_{n+1}^{p+1} f(x) \, dx.$$

Conclusion:
$$\forall n \geqslant a, \ \forall p \geqslant n, \ \int_{n+1}^{p+1} f(x) \ \mathrm{d}x \leqslant \sum_{k=n+1}^{p} f(k) \leqslant \int_{n}^{p} f(x) \ \mathrm{d}x.$$

2. (a) Soit $\alpha > 1$. Soit $f: [1, +\infty[\to \mathbb{R}_+ \text{ définie pour tout } x \in [1, +\infty[\text{ par } f(x) = \frac{1}{x^{\alpha}}]$. La fonction f étant décroissante et continue, on peut appliquer la question précédente : Soit $n \ge 1$, alors :

$$\forall p \geqslant n, \ \int_{n+1}^{p+1} \frac{\mathrm{d}x}{x^{\alpha}} \leqslant \sum_{k=n+1}^{p} \frac{1}{k^{\alpha}} \leqslant \int_{n}^{p} \frac{\mathrm{d}x}{x^{\alpha}},$$
soit:
$$\forall p \geqslant n, \ \left[\frac{1}{\alpha - 1} \cdot \frac{1}{x^{\alpha - 1}} \right]_{x=n+1}^{x=p+1} \leqslant \sum_{k=n+1}^{p} \frac{1}{k^{\alpha}} \leqslant \left[\frac{1}{\alpha - 1} \cdot \frac{1}{x^{\alpha - 1}} \right]_{x=n}^{x=p},$$
soit:
$$\forall p \geqslant n, \ \frac{1}{1 - \alpha} \left(\frac{1}{(n+1)^{\alpha - 1}} - \frac{1}{(p+1)^{\alpha - 1}} \right) \leqslant \sum_{k=n+1}^{p} \frac{1}{k^{\alpha}} \leqslant \frac{1}{1 - \alpha} \left(\frac{1}{n^{\alpha - 1}} - \frac{1}{p^{\alpha - 1}} \right).$$

Les trois expressions admettent une limite lorsque p tend vers $+\infty$ (l'expression médiane du fait que $\sum \frac{1}{n^{\alpha}}$ converge, en tant que série de Riemann de paramètre $\alpha > 1$). Ainsi, en passant à la limite lorsque p tend vers $+\infty$, on obtient :

$$\frac{1}{(\alpha - 1)(n + 1)^{\alpha - 1}} \leqslant \sum_{k=n+1}^{+\infty} \frac{1}{k^{\alpha}} \leqslant \frac{1}{(\alpha - 1)n^{\alpha - 1}}.$$

(b) On obtient de la question précédente, en multipliant pour tout $n\geqslant 1$ par $(\alpha-1)n^{\alpha-1}>0$:

$$\forall n \geqslant 1, \quad \left(\frac{n}{n+1}\right)^{\alpha-1} \leqslant (\alpha-1)n^{\alpha-1} \sum_{k=n+1}^{+\infty} \frac{1}{k^{\alpha}} \leqslant 1.$$

Les deux expressions encadrantes tendent vers 1 lorsque n tend vers $+\infty$, donc, d'après le théorème d'encadrement, la limite du terme médian existe, et :

$$\lim_{n \to +\infty} (\alpha - 1) n^{\alpha - 1} \sum_{k=n+1}^{+\infty} \frac{1}{k^{\alpha}} = 1, \quad \text{soit:} \quad \sum_{k=n+1}^{+\infty} \frac{1}{k^{\alpha}} \underset{+\infty}{\sim} \frac{1}{(\alpha - 1) n^{\alpha - 1}}.$$

3. (a) Cette fois, on applique la question 1 dans le cas d'une série divergente. On considère la fonction $f: [1, +\infty[\to \mathbb{R}_+, \text{ définie pour tout } x \in [1, +\infty[\text{ par } f(x) = \frac{1}{x}. \text{ Elle est décroissante et continue sur } [1, +\infty[$. On peut donc appliquer les résultats de la question 1, en prenant n=1:

$$\forall p \geqslant 1, \int_{2}^{p+1} \frac{\mathrm{d}x}{x} \leqslant \sum_{k=2}^{+\infty} \frac{1}{k} \leqslant \int_{k=1}^{p} \frac{\mathrm{d}x}{x}$$
soit:
$$\forall p \geqslant 1, \ \ln(p+1) - \ln 2 \leqslant \sum_{k=2}^{+\infty} \frac{1}{k} \leqslant \ln p,$$
donc:
$$\forall p \geqslant 2, \ 1 + \frac{\ln(1 + \frac{1}{p}) - \ln 2}{\ln p} \leqslant \frac{1}{\ln p} \sum_{k=2}^{+\infty} \frac{1}{k} \leqslant 1.$$

Cette dernière inégalité a été obtenue en divisant, pour tout $p \ge 2$ par $\ln p > 0$ (remarquez la nécessité de se restreindre à $p \ge 2$ pour ce faire).

Ainsi, les deux expressions encadrantes tendant vers 1 lorsque p tend vers $+\infty$, on en déduit d'après le théorème d'encadrement que l'expression médiane aussi, donc : $\sum_{k=2}^{p} \frac{1}{k} \underset{p \to +\infty}{\sim} \ln p.$

Comme le terme correspondant à l'indice k=1 de la somme est 1, et que $1=o(\ln p)$ lorsque p tend vers $+\infty$, on en déduit que $\sum_{k=1}^{p}\frac{1}{k}\sum_{p\to +\infty}^{\infty}\ln p$.

(b) Soit $n \in \mathbb{N}^*$. Calculons v_n :

$$v_n = u_{n+1} - u_n = \left(\sum_{k=1}^{n+1} \frac{1}{k}\right) - \ln(n+1) - \left(\sum_{k=1}^{n} \frac{1}{k}\right) + \ln n = \frac{1}{n+1} - \ln\left(\frac{n+1}{n}\right)$$

D'après (1), on trouve donc :

$$v_n = \frac{1}{n+1} - \frac{1}{n} + \frac{1}{2n^2} + o\left(\frac{1}{n^2}\right) = \frac{-1}{n(n+1)} + \frac{1}{2n^2} + o\left(\frac{1}{n^2}\right).$$
 Or, $\frac{-1}{n(n+1)} \sim \frac{-1}{n^2}$, donc $\frac{-1}{n(n+1)} = \frac{-1}{n^2} + o\left(\frac{1}{n^2}\right)$. Ainsi:
$$v_n = \frac{-1}{n^2} + \frac{1}{2n^2} + o\left(\frac{1}{n^2}\right) = -\frac{1}{2n^2} + o\left(\frac{1}{n^2}\right).$$

Ainsi, $v_n \sim -\frac{1}{2n^2}$. Cette dernière expression étant de signe constant (négatif) pour tout n, et le terme général d'une série convergente (série de Riemann de paramètre 2>1), on en déduit, d'après le théorème de comparaison des séries à termes positifs équivalents, que $\sum v_n$ converge, c'est-à-dire $\sum u_{n+1} - u_n$ converge.

Or, la convergence de cette dernière série équivaut à la convergence de la suite $(u_n)_{n\in\mathbb{N}}$, puisque ses sommes partielles vérifient :

$$\forall n \in \mathbb{N}^*, \ \sum_{k=1}^n u_{k+1} - u_k = \sum_{k=1}^n u_{k+1} - \sum_{k=1}^n u_k = \sum_{k=2}^{n+1} u_k - \sum_{k=1}^n u_k = u_{n+1} - u_1.$$

Donc la suite $(u_n)_{n\in\mathbb{N}^*}$ converge vers un certain réel γ .

(c) Puisque $v_n \underset{+\infty}{\sim} -\frac{1}{2n^2}$, et que les séries $\sum v_n$ et $\sum -\frac{1}{2n^2}$ sont à termes négatifs (au moins à partir d'un certain rang pour $\sum v_n$, puisque $(v_n)_{n\in\mathbb{N}^*}$ est équivalente à une suite négative), on est dans les conditions d'application des questions préliminaires (quitte à tout multiplier par un facteur -1 pour se ramener à des séries à termes positifs). Ainsi :

$$\sum_{k=n}^{+\infty} v_k \underset{+\infty}{\sim} -\frac{1}{2} \sum_{k=n}^{+\infty} \frac{1}{k^2} \underset{+\infty}{\sim} -\frac{1}{2(n-1)} \underset{+\infty}{\sim} -\frac{1}{2n},$$

l'avant-dernier équivalent découlant de la question 2a.

(d) Or, pour tout
$$n \ge 1 : \sum_{k=n}^{+\infty} = \lim_{N \to +\infty} \sum_{k=n}^{N} (u_{n+1} - u_n) = \lim_{N \to +\infty} u_{N+1} - u_n = \gamma - u_n$$
. Ainsi :

$$\forall n \geqslant 1, \quad \sum_{k=1}^{n} \frac{1}{k} = u_n + \ln n = \ln n + \gamma - \sum_{k=n}^{+\infty} v_n,$$

et, puisque d'après la question précédente, $\sum_{k=n}^{+\infty}v_n=-\frac{1}{2n}+o\left(\frac{1}{n}\right)$:

$$\sum_{k=1}^{n} \frac{1}{k} = \ln n + \gamma + \frac{1}{2n} + o\left(\frac{1}{n}\right).$$

PARTIE II – Comportement à l'infini des sommes partielles de $\sum \sigma_n$

- 1. Tout nombre n est au moins divisé par 1, donc pour tout $n \in \mathbb{N}^*$, $\sigma_n \geqslant 1$ et $\tau_n \geqslant 1$. Ainsi, les suites $(\sigma_n)_{n \in \mathbb{N}^*}$ et $(\tau_n)_{n \in \mathbb{N}^*}$ ne convergent pas vers 0: les séries $\sum \sigma_n$ et $\sum \tau_n$ divergent grossièrement.
- 2. Soit $n \in \mathbb{N}^*$. Soit $k \in \mathbb{N}^*$. Alors :

$$\sigma_k = \sum_{d|k} 1 = \operatorname{Card} \{ d \in \mathbb{N}^* \text{ tel que } d|k \} = \operatorname{Card} \{ d \in \mathbb{N}^* \text{ tel que } \exists q \in \mathbb{N}^*, \ dq = k \}.$$

Pour tout diviseur d de k, cet entier q étant unique, on obtient une bijection :

$$\Phi: \{d \in \mathbb{N}^* \text{ tel que } \exists q \in \mathbb{N}^*, \ dq = k\} \longrightarrow \{(d,q) \in (\mathbb{N}^*)^2 \text{ tel que } dq = k\},$$

en associant à tout diviseur d de k le couple $\Phi(d)=(d,q)$, où q est l'unique entier tel que dq=k. En effet, on définit une réciproque Ψ en posant pour tout couple (d,q) tel que dq=k, $\Psi(d,q)=d$. Clairement $\Phi\circ\Psi=\mathrm{id}$ et $\Psi\circ\Phi=\mathrm{id}$, donc Φ est une bijection. On en déduit l'égalité des cardinaux de ces deux ensembles, donc :

$$\sigma_k = \operatorname{Card}\{(d, q) \in (\mathbb{N}^*)^2 \text{ tel que } dq = k\}.$$

Ainsi, ceci étant vrai pour tout $k \in \mathbb{N}^*$, en sommant sur tous les entiers $k \in [1, n]$, on obtient :

$$S_n = \sum_{k=1}^n \operatorname{Card}\{(d,q) \in (\mathbb{N}^*)^2 \text{ tel que } dq = k\} = \operatorname{Card} \bigcup_{k=1}^n \{(d,q) \in (\mathbb{N}^*)^2 \text{ tel que } dq = k\}$$
$$= \operatorname{Card}\{(d,q) \in (\mathbb{N}^*)^2 \text{ tel que } dq \leqslant n\},$$

l'avant dernière égalité provenant du fait que les ensembles considérés sont deux à deux disjoints.

3. On va montrer que pour tout $n \in \mathbb{N}^*$,

$$\{(d,q)\in(\mathbb{N}^*)^2 \text{ tel que } dq\leqslant n\}=A_n\cup B_n\cup C_n,$$

et que cette union est disjointe. Soit $n \in \mathbb{N}^*$.

- Soit $(d,q) \in \{(d,q) \in (\mathbb{N}^*)^2 \text{ tel que } dq \leqslant n\}$. Alors:
 - * soit $d \leqslant \sqrt{n}$. Dans ce cas, puisque $dq \leqslant n$, on a $q \leqslant \frac{n}{d}$. En distinguant suivant la position de q par rapport à \sqrt{n} , on aboutit donc soit à $(d,q) \in A_n$, soit à $(d,q) \in B_n$;
 - * soit $d > \sqrt{n}$, et dans ce cas, $q \leqslant \frac{n}{d} \leqslant \frac{n}{\sqrt{n}} \leqslant \sqrt{n}$. D'autre part, puisque $qd \leqslant n$, on a $d \leqslant \frac{n}{q}$. Ainsi $(d,q) \in C_n$.

Donc, dans tous les cas, $(d,q) \in A_n \cup B_n \cup C_n$, donc : $\{(d,q) \in (\mathbb{N}^*)^2 \text{ tel que } dq \leqslant n\} \subset A_n \cup B_n \cup C_n$.

- * Soit $(d,q) \in A_n$, alors $1 \leqslant d \leqslant \sqrt{n}$ et $1 \leqslant q \leqslant \sqrt{n}$, donc $dq \leqslant n$.
 - * Soit $(d,q) \in B_n$, alors, puisque $q \leqslant \frac{n}{d}$, on a $dq \leqslant n$.

* Soit $(d,q) \in C_n$, alors, puisque $d \leqslant \frac{n}{q}$, on a $dq \leqslant n$.

On obtient donc $A_n \cup B_n \cup C_n \subset \{(d,q) \in (\mathbb{N}^*)^2 \text{ tel que } dq \leqslant n\}.$

Les deux inclusions étant satisfaites, on a égalité entre ces deux ensembles. De plus, il apparaît clairement de par leur définition que les trois ensembles A_n , B_n et C_n sont deux à deux disjoints. Ainsi :

$$S_n = \operatorname{Card}\{(d,q) \in (\mathbb{N}^*)^2 \text{ tel que } dq \leqslant n\} = \operatorname{Card}(A_n \cup B_n \cup C_n) = \operatorname{Card}(A_n) + \operatorname{Card}(B_n) + \operatorname{Card}(C_n).$$

4. (a)
$$\forall n \in \mathbb{N}^*$$
, $Card(A_n) = \sum_{\substack{(d,q) \in A_n}} 1 = \sum_{\substack{d \in \mathbb{N}^* \\ d \leqslant \sqrt{n}}} \sum_{\substack{q \in \mathbb{N}^* \\ q \leqslant \sqrt{n}}} 1 = \sum_{d=1}^{E(\sqrt{n})} \sum_{q=1}^{E(\sqrt{n})} 1 = \sum_{d=1}^{E(\sqrt{n})} E(\sqrt{n}) = E(\sqrt{n})^2.$

- (b) On construit une bijection $\varphi: B_n \to C_n$ en posant, pour tout $(d,q) \in B_n$, $\varphi(d,q) = (q,d)$. La fonction φ est clairement à valeurs dans C_n , et admet une réciproque ψ définie sur tout couple $(d,q) \in C_n$ par $\psi(d,q) = (q,d)$. Donc φ est une bijection, et $\operatorname{Card}(B_n) = \operatorname{Card}(C_n)$.
- (c) Soit $n \in \mathbb{N}^*$. Alors :

$$\operatorname{Card}(B_n) = \sum_{(d,q)\in B_n} 1 = \sum_{d=1}^{E(\sqrt{n})} \sum_{q=E(\sqrt{n})+1}^{E(\frac{n}{d})} 1 = \sum_{d=1}^{E(\sqrt{n})} \left(E\left(\frac{n}{d}\right) - E(\sqrt{n}) \right)$$
$$= \left(\sum_{d=1}^{E(\sqrt{n})} E\left(\frac{n}{d}\right) \right) - E(\sqrt{n}) \sum_{d=1}^{E(\sqrt{n})} 1 = \left(\sum_{d=1}^{E(\sqrt{n})} E\left(\frac{n}{d}\right) \right) - E(\sqrt{n})^2.$$

(d) Soit $n \in \mathbb{N}^*$. D'après les questions 3, 4a, 4b et 4c, on a :

$$S_n = \operatorname{Card}(A_n) + \operatorname{Card}(B_n) + \operatorname{Card}(C_n) = \operatorname{Card}(A_n) + 2\operatorname{Card}(B_n)$$
$$= 2\left(\sum_{d=1}^{E(\sqrt{n})} E\left(\frac{n}{d}\right)\right) - 2E(\sqrt{n})^2 + E(\sqrt{n})^2 = 2\left(\sum_{d=1}^{E(\sqrt{n})} E\left(\frac{n}{d}\right)\right) - E(\sqrt{n})^2.$$

Commençons par encadrer $\sum_{d=1}^{E(\sqrt{n})} E\left(\frac{n}{d}\right)$.

Pour tout $d \in [1, E(\sqrt{n})], \frac{n^{d-1}}{d} - 1 < E\left(\frac{n}{d}\right) \leqslant \frac{n}{d}, \text{ donc, en sommant } :$

$$\sum_{d=1}^{E(\sqrt{n})} \left(\frac{n}{d} - 1\right) < \sum_{d=1}^{E(\sqrt{n})} E\left(\frac{n}{d}\right) \leqslant \sum_{d=1}^{E(\sqrt{n})} \frac{n}{d} = n \sum_{d=1}^{E(\sqrt{n})} \frac{1}{d}.$$

De plus, $\sqrt{n} - 1 < E(\sqrt{n}) \leqslant \sqrt{n}$, donc $(\sqrt{n} - 1)^2 < E(\sqrt{n})^2 \leqslant n$. Ainsi, on obtient un encadrement de S_n :

$$G_n = \sum_{d=1}^{E(\sqrt{n})} 2\left(\frac{n}{d} - 1\right) - n \leqslant S_n \leqslant 2n \sum_{d=1}^{E(\sqrt{n})} \frac{1}{d} - (\sqrt{n} - 1)^2 = D_n.$$

(Remarquez que je ne mets pas de quantificateur sur la variable n, puisque je l'ai posée en début de question)

- 5. (a) Soit $(u_n)_{n\in\mathbb{N}}$ une suite telle que $u_n=O\left(\frac{1}{\sqrt{n}}\right)$. Alors $\lim_{n\to+\infty}u_n=0$, donc $\ln(1+u_n)\underset{+\infty}{\sim}u_n$. Ainsi, $\ln(1+u_n)=O(u_n)=O\left(\frac{1}{\sqrt{n}}\right)$. Pour tout $n\in\mathbb{N}^*$, $-1\leqslant E(\sqrt{n})-\sqrt{n}\leqslant 0$, donc $E(\sqrt{n})=\sqrt{n}+O(1)$.
 - (b) On reconnaît en D_n une somme partielle de la série $\sum \frac{1}{k}$. D'après I-3d, puisque $\frac{1}{E(\sqrt{n})} = O\left(\frac{1}{\sqrt{n}}\right)$:

$$D_n = 2n\ln(E(\sqrt{n})) + 2n\gamma + nO\left(\frac{1}{\sqrt{n}}\right) - n = 2n\ln(\sqrt{n}) + 2n\ln\left(\frac{E(\sqrt{n})}{\sqrt{n}}\right) + (2\gamma - 1)n + O(\sqrt{n}).$$

Or, d'après la question précédente : $\ln\left(\frac{E(\sqrt{n})}{\sqrt{n}}\right) = \ln\left(1 + O\left(\frac{1}{\sqrt{n}}\right)\right) = O\left(\frac{1}{\sqrt{n}}\right)$. Ainsi : $D_n = n \ln n + (2\gamma - 1)n + O(\sqrt{n})$.

(c) Soit $n \in \mathbb{N}^*$. Alors

$$G_n = 2n \sum_{d=1}^{E(\sqrt{n})} \frac{1}{d} - 2 \sum_{d=1}^{E(\sqrt{n})} 1 - n = 2n \sum_{d=1}^{E(\sqrt{n})} \frac{1}{d} - 2E(\sqrt{n}) - n$$
$$= D_n + (\sqrt{n} - 1)^2 - 2E(\sqrt{n}) - n = D_n - 2\sqrt{n} + 1 - 2E(\sqrt{n}).$$

(d) Or, $E(\sqrt{n}) = O(\sqrt{n})$, $\sqrt{n} = O(\sqrt{n})$ et $1 = O(\sqrt{n})$ donc

$$G_n = D_n + O(\sqrt{n}) = n \ln n + (2\gamma - 1)n + O(\sqrt{n}).$$

(e) Pour tout $n \in \mathbb{N}^*$, S_n est encadré par deux suites qui sont toutes les deux en $n \ln n + (2\gamma - 1)n + O(\sqrt{n})$. Notons pour tout $n \in \mathbb{N}^*$, $u_n = G_n - n \ln n + (2\gamma - 1)$ et $v_n = D_n - n \ln n + (2\gamma - 1)$. Alors de l'inégalité de la question 4d, on déduit :

$$\frac{u_n}{\sqrt{n}} \leqslant \frac{1}{\sqrt{n}} (S_n - n \ln n - (2\gamma - 1)n) \leqslant \frac{v_n}{\sqrt{n}}.$$

Or, $u_n = O(\sqrt{n})$, donc $\left(\frac{u_n}{\sqrt{n}}\right)_{n \in \mathbb{N}^*}$ est bornée. De même, $\left(\frac{v_n}{\sqrt{n}}\right)_{n \in \mathbb{N}^*}$ est bornée. Ainsi, la suite $\left(\frac{1}{\sqrt{n}}(S_n - n \ln n - (2\gamma - 1)n)\right)_{n \in \mathbb{N}^*}$ est bornée, donc, par définition,

$$S_n - n \ln n - (2\gamma - 1)n = O(\sqrt{n}),$$
 soit: $S_n = n \ln n + (2\gamma - 1)n + O(\sqrt{n})$

On en déduit que $S_n \underset{+\infty}{\sim} n \ln n$, puisque $(2\gamma - 1)n = o(n \ln n)$ et $O(\sqrt{n}) = o(n \ln n)$.

(f) Pour tout $\alpha \in \mathbb{R}$, $\frac{1}{S_n^{\alpha}} \underset{+\infty}{\sim} \frac{1}{n^{\alpha} \ln^{\alpha} n}$. Les séries étant à termes positifs, la nature de $\sum \frac{1}{S_n^{\alpha}}$ est la même que la nature de la série $\sum \frac{1}{n^{\alpha} \ln^{\alpha} n}$. Soit, pour tout $n \geqslant 2$, $u_n = \frac{1}{n^{\alpha} \ln^{\alpha} n}$. Si $\alpha > 1$, alors $\forall n \geqslant 2$, $n^{\alpha} u_n = \frac{1}{\ln^{\alpha} n}$, donc $\lim_{n \to +\infty} n^{\alpha} u_n = 0$. Ainsi, $u_n = o\left(\frac{1}{n^{\alpha}}\right)$, et comme $\sum \frac{1}{n^{\alpha}}$ est une série de Riemann de paramètre $\alpha > 1$, donc convergente, il en résulte, d'après un

corollaire du théorème de comparaison des séries à termes positifs, que $\sum u_n$ converge. Donc $\sum \frac{1}{S_n^{\alpha}}$ converge.

Si $\alpha < 1$, alors $\forall n \ge 2$, $nu_n = \frac{n^{1-\alpha}}{\ln^{\alpha} n}$. D'après les croissances comparées, $\lim_{n \to +\infty} nu_n = +\infty$. Ainsi, $\frac{1}{n} = o(u_n)$. Les séries étant à termes positifs, d'après un corollaire du théorème de comparaison des séries à termes positifs, $\sum u_n$ diverge car $\sum \frac{1}{n}$ diverge.

Si $\alpha=1$, alors la fonction $x\mapsto \frac{1}{x\ln x}$ est continue et décroissante sur $[2,+\infty[$. Ainsi, d'après la question I-1, pour tout $p\geqslant 3$,

$$\int_{3}^{p+1} \frac{\mathrm{d}x}{x \ln x} \, \mathrm{d}x \leqslant \sum_{k=3}^{p} \frac{1}{k \ln k}$$

soit:
$$\frac{1}{2} [(\ln x)^2]_3^{p+1} \le \sum_{k=3}^p \frac{1}{k \ln k}$$

soit:
$$\frac{1}{2}(\ln^2(p+1) - \ln^2 4) \leqslant \sum_{k=3}^p \frac{1}{k \ln k}$$

Or,
$$\left(\frac{1}{2}(\ln^2(p+1) - \ln^2 4)\right)_{p\geqslant 3}$$
 diverge vers $+\infty$, donc $\left(\sum_{k=3}^p \frac{1}{k \ln k}\right)_{p\geqslant 3}$ aussi.

Ainsi, $\sum \frac{1}{n \ln n}$ diverge donc aussi $\sum \frac{1}{S_n}$.

PARTIE III – Comportement à l'infini des sommes partielles de $\sum \tau_n$

1. Comme pour les sommes $(S_n)_{n\in\mathbb{N}^*}$, on a :

$$\forall n \in \mathbb{N}^*, \quad T_n = \sum_{(d,q) \in \{(d,q) \in (\mathbb{N}^*)^2, dq \leqslant n\}} d = \sum_{q=1}^n \sum_{d \leqslant \frac{n}{q}} d = \sum_{q=1}^n \sum_{d=1}^{E(\frac{n}{q})} d = \sum_{q=1}^n \frac{1}{2} E\left(\frac{n}{q}\right) \left(E\left(\frac{n}{q}\right) + 1\right).$$

Désolé pour la malheureuse erreur de signe qui s'était glissée dans l'énoncé.

2. Soit $n \in \mathbb{N}^*$. Pour tout $q \in [1, n]$, $\frac{n}{q} - 1 < E\left(\frac{n}{q}\right) \leqslant \frac{n}{q}$, puis

$$\frac{n}{q}\left(\frac{n}{q}-1\right) < E\left(\frac{n}{q}\right)\left(E\left(\frac{n}{q}\right)+1\right) \leqslant \frac{n}{q}\left(\frac{n}{q}+1\right).$$

Ainsi, en sommant sur toutes les valeurs de $q \in [1, n]$, on obtient :

$$\sum_{q=1}^{n} \frac{n}{q} \left(\frac{n}{q} - 1 \right) < T_n \leqslant \sum_{q=1}^{n} \frac{n}{q} \left(\frac{n}{q} + 1 \right).$$

- 3. D'après la partie I, $\sum_{q=n+1}^{+\infty}\frac{1}{q^2} \underset{+\infty}{\sim} \frac{1}{n}, \, \mathrm{donc} \, \sum_{q=n+1}^{+\infty}\frac{1}{q^2} = O\left(\frac{1}{n}\right)$
- 4. Soit $n \in \mathbb{N}^*$. Alors

$$\sum_{q=1}^{n} \left(\frac{n}{q}\right)^{2} = n^{2} \sum_{q=1}^{n} \frac{1}{q^{2}} = n^{2} \left(\sum_{q=1}^{+\infty} \frac{1}{q^{2}} - \sum_{q=n+1}^{+\infty} \frac{1}{q^{2}}\right)$$

$$= n^{2} \left(\frac{\pi^{2}}{6} + O\left(\frac{1}{n}\right)\right) = \frac{(\pi n)^{2}}{6} + O(n) = \frac{(\pi n)^{2}}{6} + O(n \ln n).$$

De plus, $\sum_{q=1}^{n} \frac{n}{q} = n \sum_{q=1}^{n} \frac{1}{q} \underset{+\infty}{\sim} n \ln n$ d'après la partie I.

Ainsi, $\sum_{q=1}^{n} \frac{n}{q} = O(n \ln n)$. Par conséquent,

$$\frac{1}{2} \sum_{q=1}^{n} \frac{n}{q} \left(\frac{n}{q} - 1 \right) = \frac{n^2}{2} \sum_{q=1}^{n} \frac{1}{q^2} - \frac{n}{2} \sum_{q=1}^{n} \frac{1}{q} = \frac{(\pi n)^2}{12} + O(n \ln n).$$

De même,

$$\frac{1}{2} \sum_{q=1}^{n} \frac{n}{q} \left(\frac{n}{q} + 1 \right) = \frac{n^2}{2} \sum_{q=1}^{n} \frac{1}{q^2} + \frac{n}{2} \sum_{q=1}^{n} \frac{1}{q} = \frac{(\pi n)^2}{12} + O(n \ln n).$$

Le même raisonnement que pour $(S_n)_{n\in\mathbb{N}^*}$, montre alors que $T_n=\frac{(\pi n)^2}{12}+O(n\ln n)$. Ainsi $T_n\underset{+\infty}{\sim}\frac{(\pi n)^2}{12}$

5. On a, pour tout $n \in \mathbb{N}^*$

$$\frac{1}{\sqrt{T_n}} = \frac{1}{\sqrt{\frac{(n\pi)^2}{12} + O(n \ln n)}} = \frac{2\sqrt{3}}{\pi n} \frac{1}{\sqrt{1 + O\left(\frac{\ln n}{n}\right)}} = \frac{2\sqrt{3}}{\pi n} \left(1 - \frac{1}{2}O\left(\frac{\ln n}{n}\right)\right) = \frac{2\sqrt{3}}{\pi n} + O\left(\frac{\ln n}{n^2}\right).$$

6. Attention, on ne peut pas utiliser des équivalents ici, les séries n'étant pas de signe constant. On utilise la question précédente :

$$\frac{(-1)^n}{\sqrt{T_n}} = \frac{2\sqrt{3}(-1)^n}{\pi n} + O\left(\frac{\ln n}{n^2}\right).$$

• $\lim_{n \to +\infty} \frac{\ln n}{\sqrt{n}} = 0$, donc $\frac{\ln n}{n^2} = o\left(\frac{1}{n\sqrt{n}}\right)$. Ainsi, d'après un corollaire du théorème de comparaison des séries à termes positifs, et les résultats de convergence des séries de Riemann, les séries étant à termes positifs, $\sum \frac{\ln n}{n^2}$ converge, donc aussi $\sum w_n$, où $w_n = O\left(\frac{\ln n}{n^2}\right)$.

• Soit pour tout $n \in \mathbb{N}^*$, $U_n = \sum_{k=1}^n \frac{(-1)^k}{k}$. Alors : $* \forall n \in \mathbb{N}^*, \ U_{2n+2} - U_{2n} = \frac{1}{2n+2} - \frac{1}{2n+1} < 0, \ \text{donc} \ (U_{2n})_{n \in \mathbb{N}^*} \ \text{décroît.}$ $* \forall n \in \mathbb{N}^*, \ U_{2n+1} - U_{2n-1} = \frac{1}{2n} - \frac{1}{2n+1} > 0, \ \text{donc} \ (U_{2n+1})_{n \in \mathbb{N}} \ \text{croît.}$ $* \forall n \in \mathbb{N}^*, \ U_{2n+1} - U_{2n} = \frac{-1}{2n+1}, \ \text{donc} \ \lim_{n \to +\infty} U_{2n+1} - U_{2n} = 0.$ Alors : $* \text{donc} \ (U_{2n})_{n \in \mathbb{N}^*} \ \text{et} \ (U_{2n+1})_{n \in \mathbb{N}} \ \text{sont adjacentes, donc admettent une limite commune ℓ. Soit a solution of the soluti$ $\varepsilon > 0$. Alors :

$$\exists N_1 \in \mathbb{N}, \ \forall n \geqslant N_1, \ |U_{2n} - \ell| < \varepsilon \qquad \text{ et } \qquad \exists N_2 \in \mathbb{N}, \ \forall n \geqslant N_2, \ |U_{2n+1} - \ell| < \varepsilon.$$

Ainsi, $\forall n \ge 2 \max(N_1, N_2), |U_n - \ell| < \varepsilon.$

On en déduit que $(U_n)_{n\in\mathbb{N}^*}$ admet une limite, donc $\sum \frac{(-1)^n}{n}$ converge, donc aussi $\sum \frac{2\sqrt{3}(-1)^n}{\pi n}$.

Ainsi, $\sum \frac{(-1)^n}{\sqrt{T_n}}$ est la somme de deux séries convergentes, donc converge.