Vous êtes invités à soigner la présentation de votre copie, à mettre en évidence les principaux résultats, à respecter les notations de l'énoncé, et à donner des démonstrations complètes (mais brèves) de vos affirmations.

PROBLEME 2

Un jeu réunit une infinité de joueurs $A_1, A_2, ..., A_n, ...$

- D'abord A_1, A_2, A_3 disputent ensemble un tournoi qui les classe (sans ex-aequo), les différents classements possibles étant équiprobables. Le joueur classé dernier est éliminé.
- Les deux autres et A_4 disputent un deuxième tournoi analogue (indépendamment du premier) qui classe ces trois joueurs. Le joueur classé dernier est éliminé.
- Il peut se faire qu'un même joueur arrive premier à ces deux tournois : dans ce cas, il est déclaré gagnant du jeu, et le jeu s'arrête.
- Sinon, les joueurs restant après le deuxième tournoi disputent avec A_5 un troisième tournoi analogue (indépendant des deux premiers) etc...
- A chaque tournoi, le joueur classé dernier est éliminé, et les deux autres rencontrent le suivant.
- Est décrété gagnant du jeu le premier joueur qui se trouve classé premier à deux tournois successifs (et alors le jeu s'arrête).
- Pour n entier supérieur ou égal à 2, on note G_n l'évènement :

" A_1 est gagnant du jeu au $n^{i\grave{e}me}$ tournoi".

 \bullet Enfin, soit X la variable aléatoire égale au nombre de tournois disputés (pour déterminer le gagnant).

L'objet du problème est d'étudier la variable aléatoire X et calculer la probabilité pour que le joueur A_1 gagne.

Partie I : loi de X et probabilité de G_n pour $n \in \{2, 3, 4, 7\}$

- 1. Calculer $P(G_2)$, c'est-à-dire la probabilité pour que le joueur A_1 remporte les deux premiers tournois (et gagne alors le jeu). Que vaut P(X=2)?
- 2. Pour tout entier $k\geqslant 4$, on note J_k l'évènement : " A_k joue".
 - **a.** Montrer que $P(J_5) = \frac{2}{3}$. Pour $i \geqslant 4$, que vaut $P(J_{i+1}/J_i)$?
 - **b.** En déduire que $P(J_k) = \left(\frac{2}{3}\right)^{k-4}$.
- **3.** a. Pour tout entier $n \ge 2$, comparer les évènements $(X \ge n)$ et J_{n+2} .
 - **b.** En déduire la valeur de P(X = n).
 - **c.** Vérifier que l'on a bien : $\sum_{n=2}^{+\infty} P(X=n) = 1$.

4. Montrer que X admet une espérance et la calculer.

Dans toute la suite, pour tout couple (i, j) d'entiers naturels non nuls, on considère les évènements P_i et S_j suivants :

 P_i : " A_1 est classé premier au $i^{i\grave{e}me}$ tournoi"

 S_j : " A_1 est classé second au $j^{i\grave{e}me}$ tournoi et le jeu continue"

- 5. Exprimer G_3 et G_4 à l'aide de ces événements.
- **6.** a. Calculer $P(G_3)$.
 - **b.** Montrer que $P(S_2/S_1) = \frac{1}{6}$ et que $P(S_2/P_1) = \frac{1}{3}$. Prouver que $P(G_4) = \frac{1}{54}$.
- 7. a. Ecrire les suites des classements de A_1 (au cours des 7 premiers tournois) favorables à l'évènement G_7 (on vérifiera qu'il y en a huit).
 - **b.** Calculer $P(G_7)$.

Partie II : probabilité pour que le joueur A_1 gagne

Pour tout $n \in \mathbb{N}$ et $k \in [0, n]$, soit \mathcal{U}_n^k l'ensemble des n-listes de $\{1, 2\}$ qui vérifient les trois conditions suivantes :

- a) elles finissent par un "2";
- b) elles ne contiennent jamais deux "1" consécutifs;
- c) k fois (exactement) un "2" est suivi d'un autre "2".

On pose $u_n^k = \operatorname{card} \mathcal{U}_n^k$, avec la convention : $u_0^0 = 1$.

Exemples:
$$(1,2,2,1,2,1,2,2,2,1,2) \in \mathcal{U}_{11}^3$$
; $(1,2,2,2) \in \mathcal{U}_{4}^2$; $(2,1,2,2) \in \mathcal{U}_{4}^1$; $(2,2,2,2) \in \mathcal{U}_{5}^2$; $(1,2,2,2,2) \in \mathcal{U}_{5}^3$

1. Calcul de u_n^k

- **a.** Pour tout $n \in \mathbb{N}^*$, déterminer \mathcal{U}_n^0 , \mathcal{U}_n^n , \mathcal{U}_{n+1}^n , \mathcal{U}_{n+2}^n . En déduire que $u_n^0 = 1$, $u_n^n = 0$, $u_{n+1}^n = 1$, $u_{n+2}^n = 1$.
- **b.** En classant les n-listes de \mathcal{U}_n^k suivant la valeur de leur $(n-1)^{i\grave{e}me}$ élément, montrer que :

$$\forall n \geq 3 \; , \; \forall k \geq 1 \; , \; u_n^k = u_{n-2}^k + u_{n-1}^{k-1}.$$

- **c.** Pour $i \in \mathbb{N}$ et $j \in [0, i]$, on pose $\gamma_i^j = u_{2i+1-j}^i$ et $\delta_i^j = u_{2i+2-j}^j$.
 - i. Calculer γ_i^0 et γ_i^i ; pour $i \ge 2$ et $j \in [1, i-1]$, exprimer $\gamma_{i-1}^{j-1} + \gamma_{i-1}^j$ en fonction de γ_i^j . En déduire que $\gamma_i^j = \begin{pmatrix} i \\ j \end{pmatrix}$.
 - ii. Procéder de la même façon qu'au 1
c.i pour obtenir $\delta_i^j.$
 - iii. En déduire que : $\forall (k,p) \in \mathbb{N}^2$, $u_{k+2p+1}^k = u_{k+2p+2}^k = \binom{k+p}{p}$.

2. Probabilité pour que A_1 gagne : on note p_1 cette probabilité

a. Montrer que, pour tout $n \ge 2$, $P(G_n) = \sum_{k=0}^{n-2} u_{n-2}^k \left(\frac{1}{6}\right)^k \left(\frac{1}{3}\right)^{n-k}$.

[il est conseillé, pour traiter cette question, d'avoir auparavant compris le calcul de $P(G_7)$ effectué à la fin de la première partie.]

b. A l'aide d'une "permutation de \sum " (dont on admettra la validité), montrer que :

$$p_1 = \sum_{k=0}^{+\infty} \left(\frac{1}{2}\right)^k \beta_k \text{ avec } \beta_k = \sum_{n=k+2}^{+\infty} u_{n-2}^k \left(\frac{1}{3}\right)^n.$$

- **c.** Calculer β_0 .
- **d.** Soit $k \in \mathbb{N}$. On rappelle que, pour tout $x \in]-1,1[$, $\sum_{p=0}^{+\infty} \binom{k+p}{p} x^p = \frac{1}{(1-x)^{k+1}}$.

Calculer
$$\alpha_k = \sum_{p=0}^{+\infty} u_{k+2p+1}^k \left(\frac{1}{3}\right)^{k+2p+3}$$
 et $\alpha_k' = \sum_{p=0}^{+\infty} u_{k+2p+2}^k \left(\frac{1}{3}\right)^{k+2p+4}$.

- e. Pour $k \ge 1$, montrer que $\beta_k = \frac{4}{27} \left(\frac{3}{8}\right)^{k+1}$. [Indication : on admettra que dans une série convergente à termes positifs, on ne change pas la valeur de la somme en faisant des sommations par paquets]
- **f.** En déduire enfin la valeur de p_1 .