ECS 4 - Mathématiques

A. Troesch

Algèbre 4 - Nombres complexes

Exercice 1 – Module et argument de $z = 1 - i \cdot \tan \theta$.

Exercice 2 – Calculer les racines carrées de $2-3i\sqrt{5}$.

Exercice 3 – Résoudre dans $\mathbb{C}: z^2 - z + i + 1 = 0$.

Exercice 4 – Déterminer les racines de X^4 + i, sous forme trigonométrique, sous forme algébrique.

Exercice 5 – Donner une expression des racines n-ièmes de $\sqrt{3}$ + i.

Exercice 6 – Résoudre dans \mathbb{C} l'équation : $(z+1)^n = (z-1)^n$.

Exercice 7 – Linéariser $\sin^{2m} t$. En déduire $\int_0^{\pi} \sin^{2m} t \cos(2mt) dt$.

Exercice 8 – Soit $n \in \mathbb{N}^*$, et $P_n = (X+1)^n - (X-1)^n$.

1. Factoriser P_n dans $\mathbb{C}[X]$.

2. En déduire que : $\forall p \in \mathbb{N}^*$, $\frac{1}{\prod\limits_{k=1}^p \tan \frac{k\pi}{2p+1}} = \frac{1}{\sqrt{2p+1}}$.

Exercice 9 – Calculer $\sum_{k=0}^{n-1} \frac{\cos(kx)}{\cos^k(x)}$.

Exercice 10 – Calculer $\sum_{k=0}^{n} \binom{n}{k} \cos(kx)$.

Exercice 11 – Calculer $nz^{n-1} + (n-1)z^{n-2} + \cdots + 2z + 1$. En déduire $\sum_{k=1}^{n-1} k \sin\left(\frac{2k\pi}{n}\right)$.

Exercice 12 – Calculer $\sum_{k=0}^{n} \sin^2(ka)$.

Exercice 13 – Calculer $1 + 2(\cos t + \cos 2t + \cdots + \cos nt)$.

Exercice 14 – En factorisant de deux manières différentes X^5-1 , calculer $\cos \frac{2\pi}{5}$ et $\cos \frac{4\pi}{5}$, puis $\cos \frac{\pi}{5}$.

Exercice 15 - Polynômes de Tchebychev de première espèce

On définit les polynômes de Tchebychev par la relation de récurrence suivante :

$$\begin{cases} T_0 = 1; & T_1 = X; \\ T_{n+1} = 2XT_n - T_{n-1} \text{ pour tout } n \geqslant 2. \end{cases}$$

- 1. Justifier que P_n est un polynôme, et déterminer son degré.
- 2. Montrer que pour tout $\theta \in \mathbb{R}$, $T_n(\cos(\theta)) = \cos(n\theta)$.
- 3. En utilisant la formule de Moivre, en déduire une expression explicite de $T_n(\cos(\theta))$ comme un polynôme en $\cos(\theta)$.
- 4. En déduire une expression explicite du polynôme T_n .

Exercice 16 - Polynômes de Tchebychev de seconde espèce

Soit U_n la suite de polynômes définie par : $U_0 = 1$, $U_1 = 2X$ et $U_{n+2} = 2XU_{n+1} - U_n$.

1. Montrer que
$$U_n\left(\frac{1}{2}\left(X+\frac{1}{X}\right)\right) = \frac{X^{n+1} + \frac{1}{X^{n+1}}}{X + \frac{1}{X}}$$
.

- 2. En déduire $U_n(\cos \theta)$.
- 3. En déduire une expression de $\sin(7\theta)$ en fonction de $\sin(\theta)$.

Exercice 17 – Soit $n \in \mathbb{N}^*$, et $P \in \mathbb{C}[X]$ un polynôme de degré n, tel que P(0) = 1 et P(1) = 0. On note, pour tout $k \in [0, n]$, $\omega_k = e^{i\frac{2k\pi}{n+1}}$.

1. Montrer que
$$\sum_{k=0}^{n} P(\omega k) = n+1$$

2. En déduire que
$$\sup_{|z|=1}|P(z)|\geqslant 1+\frac{1}{n}.$$

Exercice 18 – Le but de l'exercice est de montrer que si $\cos \theta = \frac{1}{p}$, où p est un entier impair au moins égal à 3, alors $\frac{\theta}{\pi}$ est irrationnel (on dit que $\operatorname{Arccos} \frac{1}{p}$ est incommensurable à π). On raisonne par l'absurde en supposant que $\frac{\theta}{\pi} = \frac{m}{n}$, avec m et n premiers entre eux.

1. Déterminer explicitement des polynômes T_n et U_n tels que : $\cos(n\theta) = T_n(\cos\theta)$ et $\sin(n\theta) = \sin\theta \cdot U_{n-1}(\cos\theta)$.

2. Montrer que
$$n=\sum_{j=1}^{\mathrm{E}(\frac{n-1}{2})}(-1)^{j+1}\binom{n}{2j+1}(p^2-1)^j$$
, puis que n est pair et m impair.

3. Montrer que
$$1 = \sum_{j=1}^{E(\frac{n}{4})} (-1)^{j+1} {n \choose \frac{n}{2} \choose 2j} (p^2 - 1)^j$$
. Conclure.