A. Troesch

Correction du Devoir Maison nº 14

Étude de la vitesse de convergence des séries de Riemann

- 1. La série de Riemann $\sum \frac{1}{n^{\alpha}}$ converge si et seulement si $\alpha > 1$.
- 2. Soit $\alpha > 1$.
 - (a) En s'inspirant du cours : $\forall n \geqslant 2$, $\frac{1}{n^{\alpha}} \leqslant \int_{n-1}^{n} \frac{\mathrm{d}t}{t^{\alpha}} (\operatorname{car} t \mapsto \frac{1}{t^{\alpha}} \operatorname{est décroissante sur} [n, n+1])$, donc

$$\forall n \geqslant 2, \ \forall N > n, \ \sum_{k=n+1}^{N} \frac{1}{k^{\alpha}} \leqslant \int_{n-1}^{N} \frac{\mathrm{d}t}{t^{\alpha}} = \frac{1}{\alpha} \left(\frac{1}{(n-1)^{\alpha-1}} - \frac{1}{N^{\alpha-1}} \right) \leqslant \frac{1}{\alpha (n-1)^{\alpha-1}},$$

On obtient le résultat en faisant tendre N vers $+\infty$.

(b) Soit $u_n = o\left(\frac{1}{n^{\alpha}}\right)$. Alors, $n^{\alpha}|u_n|$ tend vers 0, et $\sum u_n$ converge absolument d'après la règle de Riemann.

Soit $\varepsilon > 0$. Il existe $n_0 \in \mathbb{N}$ tel que pour tout $n \geqslant n_0$, $|u_n| \leqslant \frac{\varepsilon}{n^{\alpha}}$, et donc $|R_n| \leqslant \varepsilon \sum_{k=n+1}^{+\infty} \frac{1}{n^{\alpha}}$, Ainsi,

d'après la définition par
$$\varepsilon$$
 des o , $R_n = o\left(\sum_{k=n+1}^{+\infty} \frac{1}{n^{\alpha}}\right) = o\left(O\left(\frac{1}{n^{\alpha-1}}\right)\right) = o\left(\frac{1}{n^{\alpha-1}}\right)$.

(c) Pour tout $n \ge 2$, on a :

$$v_{n-1} - v_n = \frac{1}{n^{\alpha}} + \frac{1}{\alpha - 1} \left(\frac{1}{n^{\alpha - 1}} - \frac{1}{(n - 1)^{\alpha - 1}} \right)$$
$$= \frac{1}{n^{\alpha - 1}} \left(\frac{1}{n} + \frac{1}{\alpha - 1} \left(1 - \left(1 - \frac{1}{n} \right)^{1 - \alpha} \right) \right)$$

Ainsi, en utilisant un DL de $(1+y)^{\alpha}$ au voisinage de 0, on obtient, lorsque n tend vers $+\infty$:

$$v_{n+1} - v_n = \frac{1}{n^{\alpha - 1}} \left(\frac{1}{n} + \frac{1}{\alpha - 1} \left(1 - \left(1 + (\alpha - 1) \frac{1}{n} + \frac{\alpha(\alpha - 1)}{2} \frac{1}{n^2} + \frac{\alpha(\alpha - 1)(\alpha + 1)}{6} \frac{1}{n^3} + o\left(\frac{1}{n^3}\right) \right) \right)$$

$$= \frac{1}{n^{\alpha - 1}} \left(-\frac{\alpha}{2n^2} - \frac{\alpha(\alpha + 1)}{6n^3} + o\left(\frac{1}{n^3}\right) \right)$$

$$= -\frac{\alpha}{2n^{\alpha + 1}} - \frac{\alpha(\alpha + 1)}{6n^{\alpha + 2}} + o\left(\frac{1}{n^{\alpha + 3}}\right)$$

(d) On en déduit, en sommant entre n+1 et $+\infty$, pour tout $n\geqslant 2$:

$$\sum_{k=n+1}^{+\infty} \frac{1}{k^{\alpha}} = v_n + \frac{1}{(\alpha - 1)n^{\alpha - 1}} = \sum_{k=n+1}^{+\infty} (v_{k-1} - v_k) \quad \text{car } v_n \text{ tend vers } 0$$

$$= \frac{1}{(\alpha - 1)n^{\alpha - 1}} - \frac{\alpha}{2} \sum_{k=n+1}^{+\infty} \frac{1}{n^{\alpha + 1}} - \frac{\alpha(\alpha + 1)}{6} \sum_{k=n+1}^{+\infty} \frac{1}{n^{\alpha + 2}} + \sum_{k=n+1}^{+\infty} u_n, \quad (1)$$

où $u_n = o\left(\frac{1}{n^{\alpha+2}}\right)$. D'après les questions 2a et 2b, les trois sommes de droite sont respectivement en $O\left(\frac{1}{n^{\alpha}}\right)$, $O\left(\frac{1}{n^{\alpha+1}}\right)$ et $o\left(\frac{1}{n^{\alpha+1}}\right)$. Toutes les trois sont donc en $o\left(\frac{1}{n^{\alpha-1}}\right)$. Ainsi, on a, lorsque n tend vers $+\infty$:

$$\sum_{k=n+1}^{+\infty} \frac{1}{k^{\alpha}} = \frac{1}{(\alpha-1)n^{\alpha-1}} + o\left(\frac{1}{n^{\alpha-1}}\right).$$

(e) Cette égalité est vraie pour tout $\alpha > 1$, donc notamment pour $\alpha + 1$. On peut la réinjecter dans l'équation (1) :

$$\sum_{k=n+1}^{+\infty} \frac{1}{k^{\alpha}} = \frac{1}{(\alpha-1)n^{\alpha-1}} - \frac{\alpha}{2} \cdot \frac{1}{(\alpha)n^{\alpha}} + o\left(\frac{1}{n^{\alpha}}\right) = \frac{1}{(\alpha-1)n^{\alpha-1}} - \frac{1}{2n^{\alpha}} + o\left(\frac{1}{n^{\alpha}}\right),$$

les autres sommes étant, d'après ce qui précède, en $o\left(\frac{1}{n^{\alpha}}\right)$

(f) Encore une fois, cette égalité est aussi valable pour $\alpha + 1$ et $\alpha + 2$, et on peut la réinjecter dans (1) :

$$\begin{split} \sum_{k=n+1}^{+\infty} \frac{1}{k^{\alpha}} &= \frac{1}{(\alpha-1)n^{\alpha-1}} - \frac{\alpha}{2} \left(\frac{1}{\alpha n^{\alpha}} - \frac{1}{2n^{\alpha+1}} + o\left(\frac{1}{n^{\alpha+1}}\right) \right) - \frac{\alpha(\alpha+1)}{6} \frac{1}{(\alpha+1)n^{\alpha+1}} + o\left(\frac{1}{n^{\alpha+1}}\right) \\ &= \frac{1}{(\alpha-1)n^{\alpha-1}} - \frac{1}{2n^{\alpha}} + \frac{\alpha}{12n^{\alpha+1}} + o\left(\frac{1}{n^{\alpha+1}}\right). \end{split}$$

3. On étudie maintenant la série de Riemann $\sum \frac{1}{n^{\alpha}}$ pour $\alpha = 1$.

(a)
$$w_n - w_{n-1} = \frac{1}{n} - \ln n + \ln(n-1) = \frac{1}{n} + \ln\left(1 - \frac{1}{n}\right) = \frac{1}{n} - \frac{1}{n} + O\left(\frac{1}{n^2}\right) = O\left(\frac{1}{n^2}\right),$$
 donc $\sum w_n - w_{n-1}$ converge d'après Riemann. Or, c'est une série téléscopique, de somme partielle $w_N - w_1$. Par conséquent, la suite $(w_n)_{n \in \mathbb{N}^*}$ admet une limite γ , et donc : $\sum_{k=1}^n \frac{1}{k} = \ln n + \gamma + o(1)$.

(b) Pour tout $n \ge 1$, on a :

$$\sum_{k=1}^{n} \frac{1}{k} - 1 - \ln n = w_n - w_1 = \sum_{k=2}^{n} (w_n - w_{n-1}) = \sum_{k=2}^{n} \left(\frac{1}{k} + \ln\left(1 - \frac{1}{k}\right)\right) = \sum_{k=2}^{n} \left(-\frac{1}{2k^2} - \frac{1}{3k^3} - \varepsilon_k\right)$$
 où $\varepsilon_n = o\left(\frac{1}{n^3}\right)$ (développement limité de $\ln\left(1 - \frac{1}{k}\right)$).

(c) La série $\sum \frac{1}{2k^2}$ est, à une constante près, une série de Riemann convergente; de même pour $\sum \frac{1}{3k^3}$. Quant à $\sum \varepsilon_k$, elle converge absolument, d'après la règle de comparaison des séries par o. Alors,

$$\lim_{n \to +\infty} \left(\sum_{k=1}^n \frac{1}{k} - 1 - \ln n \right) = \lim_{n \to +\infty} \left(\sum_{k=2}^n \left(-\frac{1}{2k^2} - \frac{1}{3k^3} - \varepsilon_k \right) \right).$$

D'après la question précédente, cette limite vaut $\gamma-1$, et par conséquent,

$$\sum_{k=2}^{+\infty} \frac{1}{2k^2} + \sum_{k=2}^{+\infty} \frac{1}{3k^3} + \sum_{k=2}^{+\infty} \varepsilon_k = 1 - \gamma.$$

(d) Par conséquent, pour tout $n \ge 2$.

$$\begin{split} \sum_{k=1}^{n} \frac{1}{k} &= \ln n + 1 - \sum_{k=2}^{n} \frac{1}{2k^{2}} - \sum_{k=2}^{n} \frac{1}{3k^{3}} - \sum_{k=2}^{n} \varepsilon_{k} \\ &= \ln n + 1 - \sum_{k=2}^{+\infty} \frac{1}{2k^{2}} - \sum_{k=2}^{+\infty} \frac{1}{3k^{3}} - \sum_{k=2}^{+\infty} \varepsilon_{k} + \sum_{k=n+1}^{+\infty} \frac{1}{2k^{2}} + \sum_{k=n+1}^{+\infty} \frac{1}{3k^{3}} + \sum_{k=n+1}^{+\infty} \varepsilon_{k} \\ &= \ln n + 1 - 1 + \gamma + \sum_{k=n+1}^{+\infty} \frac{1}{2k^{2}} + \sum_{k=n+1}^{+\infty} \frac{1}{3k^{3}} + \sum_{k=n+1}^{+\infty} \varepsilon_{k} \\ &= \ln n + \gamma + \sum_{k=n+1}^{+\infty} \frac{1}{2k^{2}} + \sum_{k=n+1}^{+\infty} \frac{1}{3k^{3}} + \sum_{k=n+1}^{+\infty} \varepsilon_{k}. \end{split}$$

D'après la question (2f), on en déduit :

$$\sum_{k=1}^{n} \frac{1}{k} = \ln n + \gamma + \frac{1}{2} \left(\frac{1}{n} - \frac{1}{2n^2} \right) + \frac{1}{6n^2} + o\left(\frac{1}{n^2} \right) = \ln n + \gamma + \frac{1}{2n} - \frac{1}{12n^2} + o\left(\frac{1}{n^2} \right).$$

4. (a) On pose, pour tout $n \in \mathbb{N}^*$, $w_n = \sum_{k=1}^n \frac{1}{k^{\alpha}} - \frac{n^{1-\alpha}}{1-\alpha}$. Alors, pour tout $n \geqslant 2$:

$$w_n - w_{n-1} = \frac{1}{n^{\alpha}} + \frac{n^{1-\alpha}}{1-\alpha} \left(\left(1 - \frac{1}{n} \right)^{1-\alpha} - 1 \right)$$

$$= \frac{1}{n^{\alpha}} + \frac{n^{1-\alpha}}{1-\alpha} \left(1 + (\alpha - 1) \frac{1}{n} + \frac{\alpha(\alpha - 1)}{2} \frac{1}{n^2} + \frac{\alpha(\alpha - 1)(\alpha + 1)}{6} \frac{1}{n^3} + o\left(\frac{1}{n^3} \right) - 1 \right)$$

$$= -\frac{\alpha}{2} \frac{1}{n^{\alpha - 1}} - \frac{\alpha(\alpha + 1)}{6} \frac{1}{n^{\alpha - 2}} + o\left(\frac{1}{n^{\alpha - 2}} \right).$$

Dans un premier temps, cela implique que $w_n-w_{n-1}\sim -\frac{\alpha}{2}\frac{1}{n^{\alpha-1}}$, terme général de signe constant d'une série de Riemann convergente. Donc $\sum (w_n-w_{n-1})$ converge, c'est à dire : la suite $(w_n)_{n\in\mathbb{N}^*}$ admet une limite γ_{α} . On a alors bien l'égalité voulue.

(b) En sommant l'égalité obtenue dans la question précédente de 2 à n, on obtient, pour tout $n \ge 2$:

$$\sum_{k=1}^{n} \frac{1}{k^{\alpha}} - 1 = \frac{n^{1-\alpha} - 1}{1-\alpha} - \sum_{k=2}^{n} \frac{\alpha}{2} \frac{1}{k^{\alpha+1}} - \sum_{k=2}^{n} \frac{\alpha(\alpha+1)}{6} \frac{1}{k^{\alpha+2}} - \sum_{k=2}^{n} \varepsilon_k$$

où $\varepsilon_k=o\left(\frac{1}{n^{\alpha-2}}\right)$. Par le même raisonnement que pour le cas $\alpha=1,$ on obtient :

$$\begin{split} \sum_{k=1}^{n} \frac{1}{k^{\alpha}} &= \frac{n^{1-\alpha}}{1-\alpha} + \gamma_{\alpha} + \frac{\alpha}{2} \sum_{k=n+1}^{+\infty} \frac{1}{k^{\alpha+1}} + \frac{\alpha(\alpha+1)}{6} \sum_{k=n+1}^{+\infty} \frac{1}{k^{\alpha+2}} + \sum_{k=n+1}^{+\infty} \varepsilon_{k} \\ &= \frac{n^{1-\alpha}}{1-\alpha} + \gamma_{\alpha} + \frac{\alpha}{2} \left(\frac{1}{\alpha n^{\alpha}} - \frac{1}{2n^{\alpha+1}} \right) + \frac{\alpha(\alpha+1)}{6} \cdot \frac{1}{(\alpha+1)n^{\alpha+1}} + o\left(\frac{1}{n^{\alpha+1}} \right) \\ &= \frac{n^{1-\alpha}}{1-\alpha} + \gamma_{\alpha} + \frac{1}{2n^{\alpha}} - \frac{\alpha}{12n^{\alpha+1}} + o\left(\frac{1}{n^{\alpha+1}} \right). \end{split}$$