Devoir Maison no 7

Exercice 1 -

1. Soit F un sous-espace de E. Il est donc non vide, et stable par combinaisons linéaires à coefficients complexes; il est donc a fortiori stable également par combinaisons linéaires à coefficients réels, et est donc un sous-espace sur \mathbb{R} de E.

La réciproque n'est pas vrai; un sous-ensemble stable par combinaisons linéaires à coefficients réels n'a pas de raison en général d'être stable par combinaisons linéaires à coefficients complexes. Donnons un contre-exemple. Soit $E=\mathbb{C}$. Alors $F=\mathbb{R}\subset\mathbb{C}$ est un sous-espace sur \mathbb{R} de \mathbb{C} , mais n'est pas un sous-espace de \mathbb{C} , car F n'est pas stable par combinaisons linéaires à coefficients complexes; par exemple, i $\cdot 1 \notin \mathbb{R}$.

2. (a) Pour commencer, pour tout $y \in iF$, il existe $x \in F$ tel que y = ix, et comme $x \in E$ et que E est un espace vectoriel sur \mathbb{C} , i $x \in E$. Ainsi, i F est un sous-ensemble de E.

Soit $(x,y) \in (iF)^2$, et soit $\lambda \in \mathbb{R}$. Alors il existe x' et y' dans F tels que x = ix' et y = iy'. Ainsi :

$$\lambda x + y = i(\lambda x' + y').$$

Comme F est un sous-espace sur \mathbb{R} de E, il est stable par combinaisons linéaires à coefficients réels ; par conséquent, $\lambda x' + y' \in F$, puis $\lambda x + y \in iF$. Ainsi, iF est stable par combinaisons linéaires à coefficients réels.

De plus, puisque F est un sous-espace (sur \mathbb{R}) de E, F est non vide. Soit $x \in F$. Alors i x est un élément de i F. Ainsi, i F est non vide.

i F étant un sous-ensemble non vide de E, et étant stable par combinaisons linéaires à coefficients dans \mathbb{R} , c'est un sous-espace sur \mathbb{R} de E.

- (b) Soit $x \in F$. Alors $x = \mathrm{i}(\mathrm{i}(-x))$, et comme $-x \in F$, $x \in \mathrm{i}(\mathrm{i}\,F)$. Donc $F \subset \mathrm{i}(\mathrm{i}\,F)$. Réciproquement, soit $x \in \mathrm{i}(\mathrm{i}\,F)$. Alors, il existe $x' \in \mathrm{i}\,F$ tel que $x = \mathrm{i}\,x'$, puis il existe x'' in F tel que $x' = \mathrm{i}\,x''$. Alors x = -x'', et donc $x \in F$. Par conséquent, $\mathrm{i}(\mathrm{i}\,F) \subset F$, puis $\mathrm{i}(\mathrm{i}\,F) = F$.
- (c) Soit (b_1, \ldots, b_n) une base de F. Alors $(\mathrm{i}\,b_1, \ldots, \mathrm{i}\,b_n)$ est une base de $\mathrm{i}\,F$. En effet, l'application $\varphi: F \to \mathrm{i}\,F$ définie par $\varphi(x) = \mathrm{i}\,x$ est linéaire, et c'est un isomorphisme, sa réciproque étant l'application $\psi: \mathrm{i}\,F \to F$ définie par $\psi(y) = -\mathrm{i}\,y$. Par conséquent, φ envoie une base de F sur une base de F.

On en déduit que $\dim(F) = \dim(i F)$.

(d) Pour commencer, $F \cap i F \subset F$, et $F \cap i F$ est un sous-espace de E. En effet, montrons la stabilité par combinaison linéaire à coefficients complexes. Soit $x, y \in F \cap i F$, et soit $\lambda \in \mathbb{C}$. Écrivons $\lambda = a + i b$, où a et b sont des réels. Alors :

$$\lambda x + y = (ax + y) + b \cdot i x.$$

- Or, x et y sont dans F, et F est stable par combinaison linéaire sur \mathbb{R} . Donc $ax + by \in F$. De plus, x est éléments de iF, donc ix est élément de F, et, par stabilité de F sur \mathbb{R} , $b \cdot i x$ aussi. En sommant ces deux éléments de F, $\lambda x + y \in F$.
- De la même manière, x et y sont dans i F, et comme $a \in \mathbb{R}$, et F est stable par combinaisons linéaires réelles, on en déduit que $ax + y \in i F$. De plus, $x \in F$, donc b i $x \in i F$. Ainsi, i F étant stable pour la somme, Donc $\lambda x + y \in i F$.

Par conséquent, $\lambda x + y \in F \cap \mathrm{i}\, F$, donc $F \cap \mathrm{i}\, F$ est stable par combinaisons linéaires à coefficients complexes. De plus, $0 \in F$ et $0 \in \mathrm{i}\, F$, donc $0 \in F \cap \mathrm{i}\, F$. Donc $F \cap \mathrm{i}\, F$ est non vide. Comme il s'agit d'un sous-ensemble de F, donc de E, on en déduit que $F \cap \mathrm{i}\, F$ est un sous-espace (sur $\mathbb C$) de E. Montrons que c'est le plus grand sous-espace de E contenu dans F. Soit G un sous-espace de E contenu dans F, et soit E0, car E1 est un sous-espace (sur E2) de E3. Comme E2 est un sous-espace (sur E3) de E4. Comme E5 est un sous-espace de E5 contenu dans E6, et tout autre sous-espace E6 de E7 conclusion : E7 est un sous-espace de E8 contenu dans E9 est le plus grand sous-espace de E8 contenu dans E8.

(e) Soit G un supplémentaire de $F \cap iF$ dans F. Soit $x \in G \cap iG$. Comme $G \subset F$ et $iG \subset iF$, on a $G \cap iG \subset F \cap iF$, et par conséquent, $x \in F \cap iF$. Ainsi,

$$x \in G \cap (F \cap i F).$$

Comme G est un supplémentaire dans F de $F \cap i F$, il en résulte que x = 0. Ainsi, $G \cap i G = \{0\}$, ce qui signifie que G est un sous-espace réel de E.

- 3. Soit F un sous-espace réel de E.
 - (a) Soit $(x_j)_{j\in I}$ une famille d'éléments de F libres sur \mathbb{R} . Soit $(\lambda_j)_{j\in\mathbb{C}}$ une famille d'éléments de \mathbb{C} presque tous nuls, tels que

$$\sum_{j \in I} \lambda_j x_j = 0.$$

Écrivons pour tout $j \in I$, $\lambda_j = a_j + \mathrm{i}\, b_j$, où a_j et b_j sont des réels. Alors les a_j et les b_j sont presque tous nuls, et $\sum_{j \in I} a_j x_j = -\sum_{j \in I} b_j (\mathrm{i}\, x_j)$. La première somme est dans F, la seconde est dans i F. Ainsi,

au vu de l'égalité, elles sont toutes les deux dans $F \cap iF$ qui est égal à $\{0\}$ (F est un sous-espace réel). Ainsi :

$$\sum_{j \in I} a_j x_j = 0 \quad \text{et} \quad \sum_{j \in I} b_j (\mathbf{i} x_j) = 0.$$

Comme la famille $(x_j)_{j\in I}$ est libre (sur \mathbb{R}), la première somme (qui est à coefficients réels) amène : $\forall j \in I, \ a_j = 0.$

De plus, en multipliant la seconde somme par -i, on obtient $\sum_{j\in I} b_j x_j = 0$. En utilisant de nouveau

la liberté de la famille $(x_j)_{j\in I}$ sur \mathbb{R} , on en déduit que pour tout $j\in I,\,b_j=0$.

Ainsi, pour tout $j \in I$, $\lambda_j = 0$, et la famille $(x_j)_{j \in I}$ est libre sur \mathbb{C} .

- (b) Montrons que si $\dim_{\mathbb{C}} E = n$, alors $\dim_{\mathbb{R}} E = 2n$. Soit $(b_j)_{j \in [[1,n]]}$ une base de E sur \mathbb{C} , alors :
 - $(b_1, \ldots, b_n, i \, b_1, \ldots, i \, b_n)$ est une famille libre de E sur \mathbb{R} : Soit $(\lambda_1, \ldots, \lambda_n, \mu_1, \ldots, \mu_n)$ une famille de réels tels que :

$$\sum_{j=1}^{n} \lambda_{j} b_{j} + \sum_{j=1}^{n} \mu_{j} i b_{j} = 0 \quad \text{soit:} \quad \sum_{j=1}^{n} (\lambda_{j} + i \mu_{j}) b_{j} = 0.$$

Comme la famille (b_1, \ldots, b_n) est libre sur \mathbb{C} , on en déduit que pour tout $j \in [1, n]$, $\lambda_j + i \mu_j = 0$, donc que $\lambda_j = 0$ et $\mu_j = 0$. Ainsi, la famille $(b_1, \ldots, b_n, i \, b_1, \ldots, i \, b_n)$ est une famille libre de E sur \mathbb{R} .

• $(b_1, \ldots, b_n, i \, b_1, \ldots, i \, b_n)$ est une famille génératrice de E sur \mathbb{R} : en effet, soit $x \in E$. Comme (b_1, \ldots, b_n) est génératrice sur \mathbb{C} de E, il existe des complexes a_1, \ldots, a_n tels que

$$x = a_1b_1 + \dots + a_nb_n.$$

Soit, pour tout $j \in [1, n]$, $a_j = \lambda_j + i \mu_j$, où λ_j et μ_j sont réels. Alors :

$$x = \sum_{j=1}^{n} \lambda_j b_j + \sum_{j=1}^{n} \mu_j(\mathbf{i} b_j).$$

Ainsi, $(b_1, \ldots, b_n, i b_1, \ldots, i b_n)$ est une famille génératrice de E sur \mathbb{R} .

Par conséquent, $(b_1, \ldots, b_n, i \, b_1, \ldots, i \, b_n)$ est une base sur \mathbb{R} de E. On en déduit que la dimension de E sur \mathbb{R} est finie, et $\dim_{\mathbb{R}} E = 2n$.

De plus, d'après la question (2c), $\dim_{\mathbb{R}} F = \dim_{\mathbb{R}} i F$. Comme $F \cap i F = \{0\}$, F et i F sont en somme directe, et par conséquent, $\dim_{\mathbb{R}} F \oplus i F = 2 \dim_{\mathbb{R}} F$.

Ainsi, puisque $F \oplus i F$ est un sous-espace de E,

$$2\dim_{\mathbb{R}} F = \dim_{\mathbb{R}} F \oplus i F \leqslant \dim_{\mathbb{R}} E = 2n$$
, soit: $\dim_{\mathbb{R}} F \leqslant n$.

On a égalité si et seulement si $\dim_{\mathbb{R}} F \oplus i F = \dim_{\mathbb{R}} E$, donc si et seulement si $F \oplus i F = E$.

4. Soit G un sous-espace de E de dimension finie. Soit n la dimension de G sur \mathbb{C} , et soit (b_1,\ldots,b_n) une base sur \mathbb{C} de G. Notons F le sous-espace sur \mathbb{R} engendré (sur \mathbb{R}) par (b_1,\ldots,b_n) . Cette famille étant libre sur \mathbb{C} , elle l'est aussi sur \mathbb{R} : c'est une base de F (sur \mathbb{R}), donc $\dim_{\mathbb{R}} F = n$. De plus, (b_1,\ldots,b_n) étant une base de G sur \mathbb{C} , $(b_1,\ldots,b_n,\mathrm{i}\,b_1,\ldots,\mathrm{i}\,b_n)$ en est une base sur \mathbb{R} . Ainsi, l'espace engendré sur \mathbb{R} par $(\mathrm{i}\,b_1,\ldots,\mathrm{i}\,b_n)$ est un supplémentaire de F dans G. Or, cet espace vectoriel est exactement i F. Ainsi, $F \oplus \mathrm{i}\,F = G$.

Cet espace n'est bien sûr pas unique; en effet, si F est un tel espace, alors i F convient aussi, puisque $\mathrm{i}(\mathrm{i}\,F)=F$. D'autres contre-exemples : si $E=G=\mathbb{C}$, soit $z\in\mathbb{C}^*$, et soit $F=\mathbb{R}z$ (ainsi, F est n'importe quelle droite réelle dans le plan complexe). Alors i $F\cap F=\{0\}$, et $\mathbb{C}=F\oplus\mathrm{i}\,F$. On a trouvé une infinité de sous-espaces F qui conviennent.

- 5. Soit F un espace vectoriel sur \mathbb{R} quelconque.
 - (a) On définit des opérations sur $F \times F$ par :

$$(x,y) + (x',y') = (x+x',y+y')$$
 et $(a+ib) \cdot (x,y) = (ax-by,bx+ay)$.

Pour vérifier que cela définit une structure d'espace vectoriel, il faut vérifier toutes les propriétés d'un espace vectoriel (ici, ce n'est par le sous-espace vectoriel de quelque chose!) :

- Élément neutre pour la somme : (0,0). En effet, $\forall (x,y) \in F^2$, (0,0)+(x,y)=(x,y)+(0,0)=(x,y).
- Compatibilité avec le neutre $1 \in \mathbb{C}$:

$$\forall x, y \in F \times F, \ 1 \cdot (x, y) = (1 + i \cdot 0) \cdot (x, y) = (1 \cdot x - 0 \cdot y, 0 \cdot x + 1 \cdot y) = (x, y).$$

- Existence de l'inverse pour la somme : $\forall (x,y) \in F \times F$, (-x,-y)+(x,y)=(x,y)+(-x,-y)=(0,0).
- La somme est associative : pour tout $(x, y, x', y', x'', y'') \in F^6$,

$$((x,y) + (x',y')) + (x'',y'') = (x + x',y + y') + (x'',y'') = ((x + x') + x'') + ((y + y') + y'')$$
$$= (x + (x' + x'')) + (y + (y' + y'')) = (x,y) + ((x',y') + (x'',y'')).$$

• Le produit est associatif : pour tout $(x,y) \in F^2$, et tous $a,b,c,d \in \mathbb{R}$,

$$((a+ib)(c+id))(x,y) = (ac-bd+i(bd+ad))(x,y) = ((ac-bd)x - (ad+bc)y, (ad+bc)x + (ac-bd)y),$$

et:
$$(a+ib)((c+id)(x,y)) = (a+ib)(cx-dy, dx+cy)$$

= $(a(cx-dy) - b(dx+cy), b(cx-dy) + a(dx+cy)) = ((a+ib)(c+id))(x,y).$

- La somme est commutative : pour tout $(x, y, x', y') \in F^4$, (x, y) + (x', y') = (x + x', y + y') = (x' + x, y' + y) = (x', y') + (x, y).
- ullet Distributivité du produit sur la somme de $\mathbb C$:

$$((a+ib)+(c+id))(x,y) = ((a+c)+i(b+d)) = (a+c)x - (b+d)y, (b+d)x + (a+c)y),$$

et:
$$(a+ib)(x,y) + (c+id)(x,y) = (ax-by,bx+ay) + (cx-dy,dx+cy)$$

= $((a+c)x-(b+d)y,(b+d)x+(a+c)y)$.

- Distributivité du produit sur la somme de $F \times F$: de même. Au passage, remarquez à quel point c'est préférable de pouvoir définir un espace vectoriel comme un sous-espace d'un espace connu : il y a beaucoup moins de vérifications à faire!
- (b) Tout d'abord, montrons que F est un sous-espace sur $\mathbb R$ de $F_{\mathbb C}$; pour cela, étudions la stabilité par combinaisons linéaires. Soit X=(x,0) et Y=(y,0) deux éléments de F, et $\lambda\in\mathbb R$. Alors $\lambda X+Y=(\lambda x+y,0)$. Or, $\lambda x+y$ est dans F, par stabilité de F, donc $(\lambda x+y,0)\in F$, d'après l'abus de notation précisé dans l'énoncé. Comme $(0,0)\in F$, on en déduit que F est un sous-espace de $F_{\mathbb C}$. Remarquez que l'abus de notation se justifie par le fait que l'application linéaire $F\longrightarrow F$ (de l'ancien F vers le nouveau) donnée par $x\mapsto (x,0)$ est un isomorphisme. Soit maintenant X=(x,0) un élément de F. Alors iX=(0,x), d'après la description de la loi externe. Ainsi, iF est le sous-espace sur $\mathbb R$ de $F_{\mathbb C}$ constitué des couples (0,x), pour $x\in F$. En
- (c) On sait déjà que F et i F sont en somme directe (question précédente). Montrons que $F+\mathrm{i}\,F=F_{\mathbb{C}}$. Soit (x,y) un élément de $F_{\mathbb{C}}$. Alors (x,y)=(x,0)+(0,y), avec $(x,0)\in F$, et $(0,y)\in\mathrm{i}\,F$. Donc $F_{\mathbb{C}}\subset F+\mathrm{i}\,F$. L'inclusion réciproque est évidente, puisque $F\subset F_{\mathbb{C}}$ et i $F\subset F_{\mathbb{C}}$.

particulier, $F \cap iF = \{(0,0)\} = \{0\}$. Par conséquent, F est un sous-espace réel de $F_{\mathbb{C}}$.

- (d) La question telle que posée n'a pas de sens, E n'étant pas défini. On rectifie : Un sous-espace réel de $F_{\mathbb{C}}$ n'est pas forcément un sous-espace (sur \mathbb{R}) de F. En effet, si $F=\mathbb{R}$, alors une vérification immédiate montre que $F_{\mathbb{C}}=\mathbb{C}$; l'élément i correspond à (0,1). Le produit et l'addition correspondent au produit et à l'addition dans \mathbb{C} . On a vu plus haut que toute droite réelle de \mathbb{C} est un sous-espace réel de \mathbb{C} . Ainsi, i $F=\mathrm{i}\,\mathbb{R}$ est un sous-espace réel de \mathbb{R} , aussi étrange que puisse paraître la terminologie! C'est d'ailleurs le cas pour tout $F:\mathrm{i}\,F$ est un sous-espace réel de $F_{\mathbb{C}}$, mais n'est bien sûr pas contenu dans F, sauf dans le cas où $F=\{0\}$.
- 6. D'après la question 4, il existe un sous-espace sur \mathbb{R} de E tel que $F \oplus i F = E$. Montrons que E est isomorphe à $F_{\mathbb{C}}$. On définit l'isomorphisme

$$\varphi : F_{\mathbb{C}} = F \times F \longrightarrow E = F \oplus i F$$

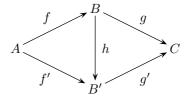
par $\varphi(x,y)=x+\mathrm{i}\,y$. Cette application est clairement une bijection. En effet l'application définie pour tout $x\in F$ et $y\in\mathrm{i}\,F$ par $\psi(x+y)=(x,-\mathrm{i}\,y)$ en est clairement une réciproque.

Montrons que c'est un isomorphisme, c'est-à-dire que cette bijection est une application linéaire. Soit (x,y) et (x',y') deux éléments de $F\times F$, et $\lambda\in\mathbb{C}$. On écrit $\lambda=a+\mathrm{i}\,b$, où a et b sont deux réels. Alors :

$$\varphi(\lambda(x,y) + (x',y')) = \varphi(ax - by + x', bx + ay + y') = (ax - by + x') + i(bx + ay + y')$$
$$= (a + ib)(x + iy) + (x' + iy') = \lambda \varphi(x,y) + \varphi(x',y').$$

Ainsi, φ est un isomorphisme de $F_{\mathbb{C}}$ sur E:E est isomorphe au complexifié de F.

Exercice 2 – Soit A, B, C et B' quatre espaces vectoriels sur $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} , et soit f, g, f', g' et h des applications linéaires telles que ci-dessous :



On suppose en outre que :

- (i) $h \circ f = f'$ et $g' \circ h = g$,
- (ii) f et f' sont injectives, g et g' sont surjectives,
- (iii) $\operatorname{Im}(f) = \operatorname{Ker}(g)$ et $\operatorname{Im}(f') = \operatorname{Ker}(g')$.
 - 1. Soit $a \in A$. Alors $f(a) \in \text{Im}(f)$, et comme Im(f) = Ker(g), on obtient $f(a) \in \text{Ker}(g)$. Ainsi, g(f(a)) = 0. De même, puisque Im(f') = Ker(f'), $g' \circ f'(a) = 0$.

2. Étude de l'injectivité de h

(a) Soit $b \in B$ tel que h(b) = 0. Ainsi, g' étant linéaire,

$$g' \circ h(b) = g'(0) = 0.$$

Or, par hypothèse $g' \circ h = g$, donc g(b) = 0.

- (b) On en déduit que $b \in \text{Ker}(g)$, donc, puisque Ker(g) = Im(f), on a $b \in \text{Im}(f)$, et donc, il existe $a \in A$ tel que f(a) = b.
- (c) On a alors $f'(a) = h \circ f(a) = h(b) = 0$. Par conséquent, $a \in \text{Ker}(f')$, et comme f' est injective, $\text{Ker}(f') = \{0\}$. Ainsi, a = 0. On en déduit que b = 0. Ainsi, $\text{Ker}(h) = \{0\}$, et par conséquent, h est injective.

3. Étude de la surjectivité de h.

- (a) L'application g est surjective, donc g'(b') dans C admet une image réciproque par g. Il existe donc $b \in B$ tel que g(b) = g'(b').
- (b) On a alors g'(h(b) b') = g'(h(b)) g'(b'), et comme $g' \circ h = g$, on a g'(h(b) b') = g(b) g'(b') = 0. Par conséquent, $h(b) - b' \in \text{Ker}(g')$, et comme Ker(g') = Im(f'), $h(b) - b' \in \text{Im}(f')$. Soit $a \in A$ tel que h(b) - b' = f'(a). Comme $f' = h \circ f$, on a h(b) - b' = h(f(a)), donc $h(b) - b' \in \text{Im}(h)$.
- (c) On a donc b' = h(b) h(f(a)) = h(b f(a)), et donc $b' \in \text{Im}(h)$. Cela montre bien que h est surjective. Étant une application linéaire injective et surjective, h est donc un isomorphisme.

Exercice 3 -

Soit T l'application de C^0 dans l'ensemble de toutes les fonctions qui à $f \in C^0$ associe la fonction T(f) définie par :

 $\forall x \in \mathbb{R}, (T(f))(x) = \int_0^x f(t)\sin(x-t) dt.$

1. (a) C^0 est un sous-ensemble du \mathbb{R} -espace vectoriel $\mathbb{R}^{\mathbb{R}}$ des fonctions de \mathbb{R} dans \mathbb{R} . Par ailleurs, la fonction nulle est continue, donc $0 \in C^0$. De plus, pour tout $\lambda \in \mathbb{R}$ et tout $f, g \in C^0$, $\lambda f + g$ est continue, donc $\lambda f + g \in C^0$. Ainsi, C^0 est un sous-espace vectoriel de $\mathbb{R}^{\mathbb{R}}$.

De même, une combinaison linéaire de fonction deux fois dérivable de dérivée seconde continue est encore deux fois dérivable de dérivée continue, et $0 \in \mathcal{C}^2$. Ainsi, \mathcal{C}^2 est un sous-espace vectoriel de \mathcal{C}^0 .

(b) Soit f une fonction continue sur \mathbb{R} . Alors

$$\forall x \in \mathbb{R}, \quad T(f)(x) = \int_0^x f(t)\sin(x-t) \, dt = \int_0^x f(t)(\sin x \cos t - \cos x \sin t) \, dt$$
$$= \sin x \int_0^x \cos t f(t) \, dt - \cos x \int_0^x \sin t f(t) \, dt.$$

Or, pour toute fonction continue g sur \mathbb{R} , $x \mapsto \int_0^x g(t) dt$ est dérivable de dérivée $x \mapsto g(x)$. Ainsi, T(f) est dérivable, de dérivée :

$$\forall x \in \mathbb{R}, \quad T(f)'(x) = \cos x \int_0^x \cos t f(t) \, dt + \sin x \cos x f(x) + \sin x \int_0^x \sin t f(t) - \cos x \sin x f(x)$$
$$= \cos x \int_0^x \cos t f(t) \, dt + \sin x \int_0^x \sin t f(t).$$

Ainsi, T(f)' est encore dérivable, et :

$$\forall x \in \mathbb{R}, \ T(f)''(x) = -\sin x \int_0^x \cos t f(t) \, dt + \cos^2(x) f(x) + \cos x \int_0^x \sin t f(t) \, dt + \sin^2(x)$$
$$= f(x) + \cos x \int_0^x \sin t f(t) \, dt - \sin x \int_0^x \cos t f(t).$$

Comme f est continue, et les intégrales également (elles sont dérivables) ainsi que les fonctions sin et cos on en déduit que T(f)'' est continue. Ainsi, $T(f) \in \mathcal{C}^2$.

(c) D'après la question précédente, T est une application de \mathcal{C}^0 dans \mathcal{C}^2 . Montrons que T est linéaire. Pour cela, soit $\lambda \in \mathbb{R}$ et $f, g \in \mathcal{C}^0$. Alors :

$$\forall x \in \mathbb{R}, T(\lambda f + g)(x) = \int_0^x (\lambda f(t) + g(t)) \sin(x - t) dt$$
$$= \lambda \int_0^x f(t) \sin(x - t) dt + \int_0^x g(t) \sin(x - t) dt = \lambda T(f) + T(g).$$

2. Dans la question (1b), on a obtenu, pour tout $f \in \mathcal{C}^0$:

$$\forall x \in \mathbb{R}, \ T(f)''(x) = f(x) + \cos x \int_0^x \sin t f(t) \ dt - \sin x \int_0^x \cos t f(t) dt = f(x) + \int_0^x \sin(t - x) f(t) \ dt = f(x) - T(f)(x).$$

Ainsi, pour tout $f \in \mathcal{C}^0$, T(f) + (T(f))'' = f.

Soit f tel que T(f) = 0. Alors T(f)'' = 0, et par conséquent, f = T(f) + T(f)'' = 0. Ainsi, $Ker(f) = \{0\}$.

- 3. Soit $K = \{g \in \mathcal{C}^2 \mid g(0) = g'(0) = 0\}.$
 - (a) K est un sous-ensemble de \mathcal{C}^2 , et la fonction nulle est dans K. De plus, soit g et h deux fonctions de K, et $\lambda \in \mathbb{R}$. Alors $\lambda g + h \in \mathcal{C}^2$, et $(\lambda g + h)(0) = \lambda g(0) + h(0) = 0$, et $(\lambda g + h)'(0) = \lambda g'(0) + h'(0) = 0$. Ainsi, $\lambda g + h \in K$.

Par conséquent, K est un sev de C^2 .

(b) Soit $f \in \mathcal{C}^0$. Alors:

$$T(f)(0) = \int_0^0 f(t)\sin(-t) dt = 0.$$

De plus.

$$T(f)'(0) = \cos 0 \int_0^0 \cos t f(t) dt + \sin 0 \int_0^0 \sin t f(t) = 0.$$

Ainsi, $T(f) \in K$. Par conséquent, $\operatorname{Im} T \subset K$.

(c) Soit $g \in K$. Alors

$$\forall x \in \mathbb{R}, \ T(g'')(x) = \int_0^x g''(t)\sin(x-t).$$

Intégrons par parties, en considérant les deux fonctions de classe C^1 , $t \mapsto g'(t)$ et $t \mapsto \sin(x-t)$, se dérivant en $t \mapsto g''(t)$ et $t \mapsto -\cos(x-t)$. Ainsi :

$$\forall x \in \mathbb{R}, \ T(g'')(x) = \int_0^x g'(t) \cos(x - t) \, dt - \left[g'(t) \sin(x - t) \right]_0^x = \int_0^x g'(t) \cos(x - t) \, dt.$$

Intégrons par parties, en considérant les deux fonctions de classe C^1 , $t \mapsto g(t)$ et $t \mapsto \cos(x-t)$, se dérivant en $t \mapsto g'(t)$ et $t \mapsto \sin(x-t)$. Ainsi :

$$\forall x \in \mathbb{R}, \ T(g'')(x) = -\int_0^x g(t)\sin(x-t) \, dt + \left[g(t)\cos(x-t)\right]_0^x = -\int_0^x g(t)\sin(x-t) \, dt = -T(g)(x) + g(x).$$

Par conséquent, T étant linéaire, T(g+g'')=T(g)+T(g'')=g. On en déduit que tout g de K est dans l'image de T. Ainsi, $\operatorname{Im} g=K$.

- 4. (a) T se restreint donc en une application linéaire de C^0 sur K. Cette application linéaire est injective d'après la question 2, et est surjective d'après la question 3b. Il s'agit donc d'un isomorphisme.
 - (b) Puisque pour tout $g \in K$, T(g+g'')=g, on en déduit que $T^{-1}(g)=g+g''$.
- 5. (a) Pour tout $x \in \mathbb{R}$,

$$T(s) = \int_0^x \sin(x - t) \sin t \, dt = \frac{1}{2} \int_0^x (\cos(2t - x) - \cos x) \, dt$$
$$= \frac{1}{4} \left[\sin(2t - x) \right]_0^x - \frac{1}{2} x \cos x$$
$$= \frac{1}{4} \sin x - \frac{1}{4} \sin(-x) - \frac{1}{2} x \cos x = \frac{1}{2} \sin x - \frac{1}{2} x \cos x.$$

(b) Puisque s = T(s) + T(s)'', il suffit de prendre f = T(s), calculé dans la question précédente.