Exercice 1 – Soit E un \mathbb{K} -ev de dimension finie $n, n \in \mathbb{N}^*$. Soit u et v des endomorphismes de E.

- 1. Démontrer que :
 - (a) $\operatorname{rg}(u \circ v) = \operatorname{rg} v \dim(\operatorname{Im} v \cap \operatorname{Ker} u)$
 - (b) $\operatorname{rg}(u \circ v) = \operatorname{rg} u \dim E + \dim(\operatorname{Im} v + \operatorname{Ker} u).$
- 2. En déduire que :

$$\operatorname{rg} u + \operatorname{rg} v - \dim E \leqslant \operatorname{rg}(u \circ v) \leqslant \inf(\operatorname{rg} u, \operatorname{rg} v).$$

Exercice 2 – Soit n un entier naturel non nul, $E = \mathbb{R}_n[X]$, et α un nombre réel non nul. On considère $f: E \to E$ définie par $f(P) = P(X + \alpha)$.

- 1. Montrer que f est un endomorphisme de E.
- 2. On note \mathcal{B} la base canonique de E. Déterminer $A = \operatorname{Mat}_{\mathcal{B}}(f)$.
- 3. Montrer que A est inversible et déterminer A^{-1} .
- 4. Montrer que pour tout $(p,q) \in [0,n]^2$ tel que p < q, on a :

$$\sum_{k=p}^{q} (-1)^{q-k} \binom{k}{p} \binom{q}{k} = 0.$$

Exercice 3 – Soit $M=(m_{i,j})_{1\leqslant i,j\leqslant n}\in\mathcal{M}_n(\mathbb{K})$. On appelle trace de M la somme des coefficients diagonaux de M.

- 1. Trace d'un endomorphisme.
 - (a) Montrer que la trace tr est une forme linéaire sur $\mathcal{M}_n(\mathbb{K})$.
 - (b) Montrer que : $\forall (A, B) \in \mathcal{M}_n(\mathbb{K})^2$, $\operatorname{tr}(AB) = \operatorname{tr}(BA)$.
 - (c) Montrer que deux matrices semblables ont même trace. On peut donc définir la trace d'un endomorphisme d'un espace vectoriel E de dimension finie comme la trace d'une matrice associée dans une base quelconque de E, cette valeur ne dépendant pas du choix de E.
- 2. Montrer que pour tout $A \in \mathcal{M}_{n,p}(\mathbb{R})$, tr $({}^tAA) \geqslant 0$, avec égalité ssi A = 0.
- 3. Déterminer une base de $Ker(\varphi)$ formée de matrices simples.
- 4. Caractérisation de la trace
 - (a) Soit E un \mathbb{K} -ev de dimension finie n, et φ et φ' deux formes linéaires non nulles sur E.

Montrer que (φ, φ') est liée dans $\mathcal{L}(E, \mathbb{K})$ si et seulement si Ker $\varphi = \operatorname{Ker} \varphi'$.

(b) Soit φ une forme linéaire non nulle définie sur $\mathcal{M}_n(\mathbb{K})$ vérifiant

$$\forall (A, B) \in \mathcal{M}_n(\mathbb{K})^2, \quad \varphi(AB) = \varphi(BA).$$

Montrer qu'il existe $\lambda \in \mathbb{K}^*$ tel que $\varphi = \lambda \cdot \text{tr.}$

Exercice 4 – Soit E un \mathbb{K} -espace vectoriel et f un endomorphisme de E. La notation f^n désigne la puissance de composition (f composé n fois avec lui-même). Par convention $f^0 = \mathrm{id}$.

On note $N_k = \operatorname{Ker}(f^k)$ et $C_k = \operatorname{Im}(f_k)$, $N = \bigcup_{k=0}^{+\infty} N_k$ et $C = \bigcap_{n=0}^{+\infty} C_k$.

- 1. Montrer que : $\forall k \in \mathbb{N}, \ N_k \subset N_{k+1} \text{ et } C_{k+1} \subset C_k$.
- 2. Montrer que
 - (a) N et C sont des sous-espaces vectoriels stables par f
 - (b) f injectif $\iff N = \{0\}$
 - (c) f surjectif $\iff C = E$.

On suppose désormais que E est de dimension finie.

- 3. (a) Montrer qu'il existe un entier naturel p (que l'on choisit le plus petit possible) tel que $N_p=N_{p+1}$ et qu'alors $\forall i\in\mathbb{N},\,N_{p+i}=N_p$
 - (b) Montrer que p est aussi le plus petit entier tel que pour tout $i \in \mathbb{N}$, $C_{i+p} = C_p$.
 - (c) En déduire que $C = C_p$ et $N = N_p$.
- 4. Montrer que $E = N \oplus P$.
- 5. (dur) Montrer que (dim N_{k+1} dim N_k) $_{k\in\mathbb{N}}$ est décroissante (la suite des noyaux itérés « s'essouffle »).