Question de cours : Définition d'une famille libre

Exercice 1 -

Soit $u \in \mathcal{L}(E)$. On note $u^2 = u \circ u$. Montrer que :

- 1. Ker $u \subset \text{Ker } u^2 \text{ et Im } u^2 \subset \text{Im } u$.
- 2. Ker $u = \text{Ker } u^2 \iff \text{Im } u \cap \text{Ker } u = \{0\}.$

Exercice 2 – Étudier la liberté des familles suivantes (dans le \mathbb{R} -ev des fonctions de \mathbb{R} dans \mathbb{R}) :

- 1. (φ_a, φ_b) , $(a, b) \in \mathbb{R}^2$, où pour tout $a \in \mathbb{R}$, $\varphi_a : x \mapsto \sin(x + a)$.
- 2. $(\varphi_a, \varphi_b, \varphi_c), (a, b, c) \in \mathbb{R}^3$.

Question de cours : Définition du noyau d'une application linéaire. Caractérisation de l'injectivité à l'aide du noyau (avec preuve)

Exercice 3 – Étudier la liberté de la famille suivante dans le $\mathbb R$ espace vectoriel des fonctions de $\mathbb R$ dans $\mathbb R$:

$$(f_k)_{0 \le k \le n}, f_k : x \mapsto \cos^k x.$$

Exercice 4 – Soit E, F et G trois espaces vectoriels sur \mathbb{R} . Soit $f \in \mathcal{L}(E,F)$ et $g \in \mathcal{L}(F,G)$. Montrer les formules suivantes :

- 1. $Ker(g \circ f) = f^{-1}(Ker(g));$
- 2. $Ker(g \circ f) \supset Ker(f)$;
- 3. $\operatorname{Im}(g \circ f) = g(\operatorname{Im}(f))$;
- 4. $\operatorname{Im}(g \circ f) \subset \operatorname{Im}(g)$;
- 5. $\operatorname{Ker}(g \circ f) = \operatorname{Ker}(f) \iff \operatorname{Ker}(g) \cap \operatorname{Im}(f) = \{0\};$
- 6. $\operatorname{Im}(g \circ f) = \operatorname{Im}(g) \iff \operatorname{Ker}(g) + \operatorname{Im}(f) = F$.

Question de cours : Définition d'une application linéaire, d'un endomorphisme, d'un isomophisme, d'un automorphisme. Notations pour les ensembles.

Exercice 5 – On dit qu'un endomorphisme p de E est un projecteur de E si et seulement si $p\circ p=p$

- 1. Montrer que id_E et $0_{\mathcal{L}(E)}$ sont des projecteurs.
- 2. Montrer que si p est un projecteur de E, alors $\mathrm{id}_E p$ est un projecteur de E.
- 3. Montrer que si p est un projecteur, $Im(p) = \{x \in E, p(x) = x\}$
- 4. Montrer que si p est un projecteur, alors $\mathrm{Im}(p)$ et $\mathrm{Ker}(p)$ sont supplémentaires dans E.
- 5. Soient p et q deux projecteurs. Montrer que p=q si et seulement si ${\rm Im}\, p={\rm Im}\, q$ et $p\circ q=q\circ p$.
- 6. Soient p et q deux projecteurs de E. Montrer que p+q est un projecteur si et seulement si $p\circ q=q\circ p=0$.