Exercice 1 – Soit $A = \begin{pmatrix} 1 & -1 & 2 & -2 \\ 0 & 0 & 1 & -1 \\ 1 & -1 & 1 & 0 \\ 1 & 1 & 1 & 0 \end{pmatrix}$, et $f \in \mathcal{L}(\mathbb{R}^4)$ can. associé à A.

- 1. Déterminer rg(f), une base de Ker(f) et une base de Ker(f-id).
- 2. Déterminer une base de $Ker(f^2)$ et une base de $Ker(f-id)^2$. Montrer que ces deux espaces sont supplémentaires dans \mathbb{R}^4 .
- 3. Montrer qu'il existe une base $\mathcal{B}'=(e_1',e_2',e_3',e_4')$ de \mathbb{R}^4 dans laquelle la matrice

$$\text{de } f \text{ est \'egale \`a } T = \left(\begin{array}{cccc} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{array} \right)$$

 $\text{de } f \text{ est \'egale \`a } T = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix} .$ $\textbf{Exercice 2} - \text{Soit } A = (a_{i,j}) \in \mathcal{M}_n(\mathbb{K}). \text{ On d\'efinit la trace de } A \text{ par : } \text{tr}(A) = \sum_{i=1}^n a_{i,i}.$

- 1. tr est une forme linéaire sur $\mathcal{M}_n(\mathbb{K})$.
- 2. $\forall A, B \in \mathcal{M}_n(\mathbb{K})^2$, $\operatorname{tr}(AB) = \operatorname{tr}(BA)$.
- 3. Deux matrices semblables ont même trace. (On dit que deux matrices A et Bsont semblables s'il existe une matrice inversible P telle que $B = P^{-1}AP$

Exercice 3 – Soit $f: \mathbb{R}_n[X] \longrightarrow \mathbb{R}_n[X]$ définie par f(P) = P + P'.

- 1. Montrer que f est un automorphisme.
- 2. Déterminer la matrice M de f relativement à la base canonique de $\mathbb{R}_n[X]$
- 3. Montrer qu'il existe une matrice N telle que $M = I_n + N$, et $N^n = 0$ (on dit que N est nilpotente)
- 4. Soit n=4. Déterminer explicitement M^k , pour tout $k \in \mathbb{N}$.

Exercice 4 – Soit $f \in \mathcal{L}(\mathbb{R}^3)$ telle que $f \neq 0$, et $f^2 = 0$. Montrer qu'il existe une base de \mathbb{R}^3 dans laquelle la matrice de f est égale à $\left(\begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{array} \right)$.

Exercise 5 - Soit
$$f(x) = \left[\frac{1}{\sin\frac{1}{x}}\ln\left(\frac{x}{x+1}\right)\right]\sqrt{x^2+1}$$

- 1. Donner un équivalent de f en $+\infty$ et en $-\infty$.
- 2. Déterminer une asymptote au graphe de f et la position relative des deux courbes au voisinage de l'infini.

Exercice 6 – Soit $f \in \mathcal{L}(\mathbb{R}^2)$, représentée par la matrice $A = \begin{pmatrix} 4 & -6 \\ 1 & -1 \end{pmatrix}$ dans la base canonique. Exprimer la matrice de f:

- 1. relativement à la base canonique et à la base ((1,1),(1,-1));
- 2. relativement à la base ((1,1),(1,-1)) et à la base canonique;
- 3. relativement à la base canonique et à la base ((1, -1), (1, 1));
- 4. dans la base ((1,2),(-1,2));
- 5. dans une base dans laquelle sa matrice est diagonale; en déduire A^n .