Question de cours : Changement de variable dans une intégrale.

Exercice -

1. Soit P(X) un polynôme de degré noté n tel qu'il existe $\lambda \in \mathbb{R}$ tel que

$$(X^{2} - 1)P''(X) + 4XP'(X) = \lambda P(X). \tag{1}$$

- (a) Montrer, en considérant les termes de plus haut degré, que $\lambda = n(n+3)$.
- (b) Soit $Q(X) = (-1)^n P(-X)$. Montrer que Q(X) est solution de (1).
- (c) En étudiant deg(P(X) Q(X)), prouver que P(X) = Q(X). En déduire la parité de P(X) en fonction de n.
- 2. Montrer que pour tout n, l'équation (1) admet une unique solution P_n unitaire. On pourra donner une relation de récurrence satisfaite par les coefficients de P_n .

Question de cours : Définition, dérivabilité et dérivée de Arctan

Exercice -

Soit P(X) un polynôme nul de degré p. Pour tout entier $n \ge 0$, on lui associe le polynôme $D_n(P)$ défini par : $D_n(P) = (X^2 - 1)P''(X) + 2XP'(X) - n(n+1)P(X)$.

- 1. (a) Vérifier que le polynôme $D_n(P)$ est de degré inférieur ou égal à p, en distinguant les trois cas $p=1,\ p=1$ et $p\geqslant 2$.
 - (b) Montrer que:
 - lorsque p = 0, $D_n(P)$ est le polynôme nul si et seulement si n = 0.
 - lorsque $p \ge 1$, le degré du polynôme $D_n(P)$ est strictement inférieur à p si et seulement si p = n.

En déduire que si un polynôme P, différent du polynôme nul, vérifie $D_n(P)=0$, alors son degré est n.

- (c) Déterminer tous les polynômes P vérifiant $D_n(P) = 0$, lorsque $n \in [0, 3]$.
- 2. (a) Pour tout polynôme P de degré $n \ge 2$, expliciter les coefficients du polynôme $D_n(P)$ en fonction des coefficients de P.
 - (b) Soit $a \neq 0$. Montrer qu'il existe un unique polynôme P(X) de degré n de coefficient dominant a tel que $D_n(P) = 0$.

 ${\bf Question} \ {\bf de} \ {\bf cours} \ : {\bf Degr\'e} \ {\bf d'une} \ {\bf somme} \ {\bf et} \ {\bf d'un} \ {\bf produit} \ {\bf de} \ {\bf polyn\^omes}.$

Exercice 1 – On définit, pour tout $x \in \mathbb{R}$, $sh(x) = \frac{e^x - e^{-x}}{2}$.

- 1. Montrer que sh'admet une fonction réciproque Argsh dérivable sur son domaine de définition. Déterminer sa dérivée.
- 2. Expliciter Argsh à l'aide des fonctions logarithme et exponentielle.
- 3. Retrouver l'expression de la dérivée de Argsh.

Exercice 2 –

Calculer $\int_{-1}^{1} \frac{\operatorname{Arctan}(x) \sin(\operatorname{Arctan}(x))}{1 + x^{2}} dx.$