Programme des colles de la semaine 3 (29/09 - 04/09)

I. Diagonalisation: voir semaines 1 et 2

II. Algèbre bilinéaire

1. Formes bilinéaires : voir semaine 2

2. Produits scalaires.

Dans ce paragraphe, E est un \mathbb{R} -ev de dimension quelconque (finie ou non), sauf indication contraire.

(a) Définitions

• Définition d'un produit scalaire

• Exemples: ps usuel sur \mathbb{R}^n , $(f,g) \mapsto \int_a^b f(t)g(t) dt$ sur $\mathcal{C}^0([a,b],\mathbb{R})...$

(b) Norme euclidienne. On suppose E muni d'un produit scalaire $\langle \cdot, \cdot \rangle$.

- Notation $||x|| = \sqrt{\langle x, x \rangle}$
- Définition d'une norme.
- Lemme: $||x + y||^2 = ||x||^2 + ||y||^2 + 2\langle x, y \rangle$
- Théorème : Inégalité de Cauchy-Schwarz
- Corollaire : inégalité triangulaire pour $\|\cdot\|$
- Théorème : $\|\cdot\|$ est une norme, appelée norme euclidienne associée au produit scalaire $\langle\cdot,\cdot\rangle$.
- Exemples : normes associées au produit scalaire usuel sur \mathbb{R}^n , à produit scalaire $(f,g)\mapsto\int_a^b f(t)g(t) \ \mathrm{d}t$, et explicitation des inégalités de Cauchy-Schwarz dans ces deux cas.
- Comment la donnée d'une norme euclidienne $\|\cdot\|$ permet de retrouver l'expression du produit scalaire associé.
- Comment vérifier qu'une norme est euclidienne.
- Exemple d'une norme non euclidienne $(X \mapsto \max(|x_i|, i \in [1, n]))$.