LYCÉE LA BRUYÈRE, VERSAILLES ECS 2 – Mathématiques 2009/2010

Algèbre 3 - Diagonalisation

Exercice 1 – Déterminer les valeurs propres des endomorphismes f de \mathbb{R}^2 dont la matrice dans la base canonique est M. Ces endomorphismes sont-ils diagonalisable dans \mathbb{R} ? dans \mathbb{C} ? Si oui, calculer M^n , ainsi qu'une matrice $N \in \mathcal{M}_2(\mathbb{C})$ telle que $N^2 = M$.

1.
$$M = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$$
 2. $M = \begin{pmatrix} 2 & 0 \\ -1 & 1 \end{pmatrix}$ 3. $M = \begin{pmatrix} 3 & 1 \\ -1 & 1 \end{pmatrix}$ 4. $M = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ 5. $M = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$.

Exercice 2 – Soit $A = \begin{pmatrix} -4 & -6 & 0 \\ 3 & 5 & 0 \\ 3 & 6 & 5 \end{pmatrix}$. A est-elle diagonalisable? Calculer A^n .

Exercice 3 – Soit u un endomorphisme nilpotent. Déterminer Spec(u).

Exercice 4 – Soit
$$A = \begin{pmatrix} 1 & -1 & 2 & -2 \\ 0 & 0 & 1 & -1 \\ 1 & -1 & 1 & 0 \\ 1 & -1 & 1 & 0 \end{pmatrix}$$
. A est-elle diagonalisable?

Exercice 5 – Soit $A = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & -1 & 1 \end{pmatrix}$. Calculer $A^3 - 3A^2 + 3A - I$. A est-elle diagonalisable?

Exercice 6 – Soit f un endomorphisme d'un espace E de dimension finie.

- 1. Montrer que si λ est une valeur propre non nulle, alors $E_{\lambda} \subset \operatorname{Im} f$.
- 2. Montrer que si f est diagonalisable, alors Im $f \oplus \text{Ker } f = E$.

Exercice 7 – Soit E un espace vectoriel de dimension au moins 2, et f un endomorphisme de E de rang 1.

- 1. Quel est le nombre de valeurs propres de f?
- 2. Soit X un vecteur non nul de Im f. Donner une CNS portant sur X pour que f soit diagonalisable. Le cas échéant, comment déterminer l'unique valeur propre non nulle λ et l'espace propre correspondant E_{λ} ?
- 3. Exemple : diagonaliser $\begin{pmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \\ 3 & 6 & 9 \end{pmatrix}$.

Exercice 8 – Soient E un \mathbb{K} -ev de dimension n et u un endomorphisme de E possédant n valeurs propres distinctes.

- 1. Montrer que $v \in \mathcal{L}(E)$ vérifie $u \circ v = v \circ u$ ssi les vecteurs propres de u sont aussi vecteurs propres de v.
- 2. Montrer qu'il existe $w \neq 0$ tel que $w \circ u = -u \circ w$ si et seulement si soit u admet deux valeurs propres opposées, soit 0 est valeur propre de u.

Exercice 9 - (codiagonalisation)

Soit u et v deux endomorphismes diagonalisables d'un \mathbb{R} -ev E.

- 1. On suppose que uv = vu
 - (a) Montrer que les sous-espaces propres de u sont stables par v.
 - (b) En déduire qu'il existe une base \mathcal{B} de E dans laquelle la matrice de u et la matrice de v sont diagonales.
- 2. On suppose maintenant qu'il existe une base \mathcal{B} de E dans laquelle la matrice de u et la matrice de v sont diagonales. Montrer que uv = vu.

Exercice 10 – Soit E un ev de dimension 4, et \mathcal{B} une base de E. Soit $f \in \mathcal{L}(E)$ tel que :

$$[f]_{\mathcal{B}} = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 2 & 0 & -1 & 0 \\ 0 & 7 & 0 & 6 \\ 0 & 0 & 3 & 0 \end{pmatrix}.$$

Déterminer les valeurs propres de f; f est-elle diagonalisable?

Exercice 11 – Soit E un espace vectoriel de dimension finie, et $u \in \mathcal{L}(E)$ vérifiant $u^3 - 3u^2 + 2u = 0$. Montrer que u est diagonalisable.

Exercice 12 – Soit $n \in \mathbb{N}^*$. On considère l'application $\varphi : \mathbb{R}_n[X] \longrightarrow \mathbb{R}_n[X]$:

$$\varphi(P) = (X^2 - 1)P'(X) - (nX + 1)P(X).$$

- 1. Vérifier que φ est effectivement un endomorphisme de $\mathbb{R}_n[X]$.
- 2. Soit P un vecteur propre de φ . Montrer que les seules racines possibles de P dans \mathbb{C} sont -1 et 1. En déduire les valeurs propres de φ .
- 3. L'endomorphisme φ est-il diagonalisable?

Exercice 13 – Soit E un \mathbb{K} -ev de dimension finie, et p,q deux projecteurs tels que $p \circ q = q \circ p$. On pose f = p + q et $g = p \circ q$.

- 1. (a) g est un projecteur.
 - (b) $\operatorname{Spec}(p) \subset \{0, 1\}, \operatorname{Spec}(q) \subset \{0, 1\}, \operatorname{Spec}(f) \subset 0, 1, 2.$
- 2. $0 \in \operatorname{Spec}(f)$ ssi Ker $p \cap \operatorname{Ker} q \neq \{0\}$. Déterminer alors E_0
- 3. $2 \in \text{Spec}(f)$ ssi Im $p \cap \text{Im } q \neq \{0\}$. Déterminer alors E_2 .

Exercice 14 – Soit E un \mathbb{C} -ev de dimension 4, \mathcal{B} une base de E. Soit :

On note f l'endomorphisme dont la matrice dans la base \mathcal{B} est A.

1. Donner une base de Im f et de Ker f.

- 2. (a) Soit $y \in \text{Im } f$ non nul. Montrer que y est un vecteur propre. Quelle est la valeur propre associée?
 - (b) Déterminer les valeurs propres de f.
 - (c) L'endomorphisme f est-il diagonalisable? Si oui, donner une base de diagonalisation,
- 3. Diagonaliser B.

Exercice 15 – (d'après oral ESCP) – Soit $A = \begin{pmatrix} 0 & -1 & -1 \\ 1 & 0 & -1 \\ 1 & 1 & 0 \end{pmatrix}$.

- 1. Déterminer la matrice $B = A^2 + 2I_3$.
- 2. Montrer que $B^2 = B + 2I$.
- 3. Déterminer les valeurs propres de B, et les sous-espaces propres associés. B est-elle diagonalisable?
- 4. En utilisant une relation entre les valeurs propres de A et les valeurs propres de B, justifier que A n'est pas diagonalisable dans $\mathcal{M}_3(\mathbb{R})$.
- 5. Montrer que B est inversible et exprimer B^{-1} en fonction des matrices B et I.
- 6. On s'intéresse maintenant aux puissances de B.
 - (a) On pose pour tout $n \ge 2$, $X^n = (X^2 X 2)Q_n(X) + R_n(X)$, où Q_n et R_n sont deux polynômes tels que $deg(R_n) < 2$. Justifier l'existence et l'unicité de Q_n et R_n , et déterminer R_n .
 - (b) En déduire l'expression de B^n en fonction de I, B et n, pour $n \ge 0$.
 - (c) Montrer que l'expression de B^n en fonction de I, B et n qui a été obtenue pour $n \ge 0$ est encore valable pour les entiers négatifs.

Exercice 16 – (Oral ESCP) – Soit E l'espace vectoriel des fonctions continues sur \mathbb{R} , à valeurs réelles. Soit a>0 un réel donné. À tout f de E, on associe la fonction $T_a(f)$ définie pour tout x réel par :

$$T_a(f) = \frac{1}{2a} \int_{r=a}^{r+a} f(t) dt.$$

- 1. Montrer que pour tout f de E, $T_a(f)$ est bien définie, et est de classe \mathcal{C}^1 sur \mathbb{R} .
- 2. Montrer que $T_a(f)$ est constante si et seulement si f est périodique de période T=2a.
- 3. Montrer que l'application T_a est un endomorphisme de E. Détemriner son novau, T_a est-il surject if?
- 4. Soit $n \ge 2$ un entier naturel et $\mathbb{R}_n[X]$ l'espace vectoriel des fonctions polynômes de degré inférieur ou égal à n. Montrer que la restriction de T_a à $\mathbb{R}_n[X]$ est un endomorphisme de $\mathbb{R}_n[X]$.

On notera encore T_a cette restriction.

- 5. (a) Montrer que la matrice associée à T_a dans la base canonique de $\mathbb{R}_n[X]$ est triangulaire supérieure. En déduire les valeurs propres de T_a . Cet endomorphisme est-il diagonalisable?
 - (b) Soit $f \in \mathbb{R}_n[X]$. Montrer que si le degré de f est égal à 2, f n'est pas vecteur propre
 - (c) Montrer que si f est vecteur propre de T_a , sa dérivée f' l'est également. En déduire les sous-espaces propres de T_a .

Exercice 17 – (Oral HEC) – Soit
$$A = \begin{pmatrix} 0 & -8 \\ 4 & 12 \end{pmatrix}$$
.

- 1. Trouver $P \in GL_2(\mathbb{R})$ et D diagonale tels que $D = P^{-1}AP$.
- 2. Soit B tel que BA = AB. Montrer que tout vecteur propre de A est vecteur propre de B. En déduire que $P^{-1}BP$ est diagonale dès que B commute avec A.
- 3. Trouver toutes les matrices M réelles d'ordre 2 telles que $M^2 = A$.
- 4. Même question avec $A = I_2$, puis $A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$.

Exercice 18 – (Oral HEC) – Soient trois suites réelles définies par : $\forall n \in \mathbb{N}$, $\begin{cases} a_{n+1} = -a_n + b_n + c_n \\ b_{n+1} = a_n - b_n + c_n \\ c_{n+1} = a_n + b_n - c_n. \end{cases}$

Déterminer $(a_n)_{n\in\mathbb{N}}$, $(b_n)_{n\in\mathbb{N}}$, $(c_n)_{n\in\mathbb{N}}$ en fonction de a_0 , b_0 , c_0 et n. Convergence

Exercice 19 - (Oral HEC) -

- 1. Soit $A = \begin{pmatrix} a & 1 \\ 0 & b \end{pmatrix}$. CNS sur a et b pour que A soit diagonalisable?
- 2. Soient X et Y deux v.a.r. indépendantes suivante une loi binomiale $\mathcal{B}(n,\frac{1}{2})$. Soit M la

Exercice 20 – (Oral HEC) – Soit
$$M = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$$

- 1. Montrer qu'il existe a_n et b_n tels que $M^n = a_n M + b_n I_3$. Les déterminer.
- 2. Trouver le reste de la division euclidienne de X^n par $X^2 X 2$. Retrouver 1.
- 3. Diagonaliser M. Retrouver 1.

Exercice 21 – (Oral ESCP) – On considère la matrice $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ dans $\mathcal{M}_2(\mathbb{Z})$. On suppose qu'il existe un entier $n \ge 2$ tel que $A^n = I_2$. Le but de l'exercice est de montrer qu'alors, $A^{12} = I_2$. On note σ l'ensemble des valeurs propres (réelles ou complexes) de A.

- 1. Montrer que $\lambda \in \sigma$ si et seulement si $\lambda^2 (a+d)\lambda + (ad-bc) = 0$. En déduire que σ n'est pas vide.
- 2. Vérifier que la matrice A vérifie la relation $A^2 (a+d)A + (ad-bc)I_2 = 0$.
- 3. Montrer que σ vérifie l'une et seulement l'une des deux propositions suivantes :
 - (i) $\sigma \subset \{-1, 1\}$
 - (ii) il existe un entier p tel que $1 \leqslant p < \frac{n}{2}$, et $\sigma = \{e^{\frac{2ip\pi}{n}}, e^{\frac{-2ip\pi}{n}}\}$. Que peut-on dire, dans ce cas, du nombre $2\cos\left(\frac{2p\pi}{n}\right)$?
- 4. On suppose que $Card(\sigma) = 2$. En étudiant les différents cas, montrer que $A^{12} = I_2$.
- 5. On suppose que $\sigma = 1$, et que $A \neq I_2$.
 - (a) En utilisant la question 2, montrer que $Ker(A I_2) = Im(A I_2)$.
 - (b) En déduire que A est semblable à $T = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$.
 - (c) Calculer T^k pour tout $k \ge 1$. En déduire une contradiction.
- 6. Montrer que si $\sigma = -1$ et $A \neq -I_2$, on arrive également à une contradiction.
- 7. Conclure.