Analyse 3 – Intégrales impropres (1)

Exercice 1 - Étudier la nature et, en cas de convergence, calculer la valeur des intégrales suivantes.

1.
$$I_1 = \int_0^1 \frac{\mathrm{d}x}{x(x-1)}$$

5.
$$I_5 = \int_0^{\frac{\pi}{2}} \frac{\mathrm{d}x}{\cos^2 x}$$

2.
$$I_2 = \int_0^{+\infty} \frac{\mathrm{d}x}{(x+1)(x+2)}$$
 6. $I_6 = \int_0^{+\infty} \frac{1}{(x^2+1)(x+1)}$

6.
$$I_6 = \int_0^{+\infty} \frac{1}{(x^2+1)(x+1)}$$

3.
$$I_3 = \int_0^{\frac{\pi}{2}} \tan x \, dx$$

3.
$$I_3 = \int_0^{\frac{\pi}{2}} \tan x \, dx$$
 7. $I_7 = \int_1^2 \frac{dt}{t(\ln t)^{\beta}}, \, \beta \in \mathbb{R}$

4.
$$I_4 = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\sin x}{\sqrt{\cos x}} \, \mathrm{d}x$$

8.
$$I_8 = \int_3^{+\infty} \frac{\mathrm{d}t}{t \ln t (\ln \ln t)^{\beta}}, \quad \beta \in \mathbb{R}.$$

Exercice 2 – Soit f une fonction continue sur $[a, +\infty]$, $a \in RR$. Montrer que si f admet une limite non nulle en $+\infty$, alors $\int_{-\infty}^{+\infty} f(t) dt$ diverge.

Exercice 3 – Soit, pour tout $n \in \mathbb{N}$, f_n l'application de \mathbb{R} dans \mathbb{R} définie par :

$$\forall x \in \mathbb{R}, \quad f_n(x) = e^{-(n+x)}.$$

- 1. Montrer que pour tout x de \mathbb{R} , $\lim_{n\to+\infty} f_n(x)=0$ (on dit que la suite de fonctions $(f_n)_{n\in\mathbb{N}}$ converge simplement vers la fonction nulle, « simplement » signifiant point par point)
- 2. Pour tout $n \in \mathbb{N}$, justifier la convergence et caculer la valeur de l'intégrale :

$$I_n = \int_0^{+\infty} f_n(t) \, \mathrm{d}t.$$

3. Peut-on intervertir limite et intégrale (impropre ou non d'ailleurs)?

Exercice 4 – Soit $I_n = \int_1^{+\infty} \frac{\ln(nt)}{(t^2+t+1)^n} dt$, $n \in \mathbb{N}^*$. Montrer que la suite $(I_n)_{n \in \mathbb{N}}$ est bien définie, et calculer sa limite.

Exercice 5 -

- 1. On pose, pour tout $n \in \mathbb{N}$, $I_n = \int_0^{+\infty} \left(\frac{\sin x}{2+x^3}\right)^n dx$. Montrer que pour tout n, I_n est bien définie, et que la suite $(I_n)_{n\in\mathbb{N}}$ tend vers 0Indication : on pourra utiliser la relation de Chasles, en coupant l'intégrale en deux en $a \in \mathbb{R}^*_{\perp}$.
- 2. Même question avec $I_n = \int_0^{+\infty} \frac{\mathrm{d}x}{(x^5+1)^n}$

Exercice 6 – Étudier la nature des intégrales impropres suivantes :

1.
$$I_1 = \int_0^{+\infty} e^{-\sqrt{x}} dx$$

9.
$$I_9 = \int_0^1 (\ln(x^2 + 1) - \ln x^2 \, dx$$

2.
$$I_2 = \int_0^{+\infty} x \ln x e^{-x^{\alpha}} dx, \ \alpha \in \mathbb{R}$$

10.
$$I_{10} = \int_0^{+\infty} \frac{\sqrt{|\ln x|}}{\sqrt{x}e^{2x}}$$

3.
$$I_3 = \int_0^{+\infty} \frac{1}{x(x-1)(x-2)} \, \mathrm{d}x$$

11.
$$I_{11} = \int_0^{+\infty} \frac{\sin 1x^2}{|\ln x|\sqrt{x}}$$

4.
$$I_4 = \int_0^4 \frac{1}{\sqrt{x(x-1)(x-2)(x-3)(x-4)}} dx$$
 12. $I_{12} = \int_0^1 \frac{\sqrt{x}}{\ln(1-x)} dx$

12.
$$I_{12} = \int_0^1 \frac{\sqrt{x}}{\ln(1-x)} \, \mathrm{d}x$$

$$5. I_5 = \int_1^{+\infty} \frac{1}{x^{\ln(\ln x)}} \, \mathrm{d}x$$

13.
$$I_{13} = \int_{1}^{+\infty} (\sqrt{x^2 + 1} - \sqrt[3]{x^3 + 1}) \, \mathrm{d}x$$

6.
$$I_6 = \int_0^{+\infty} \left(\frac{1}{\sqrt{x}} - \frac{1}{\sqrt{x+1}} \right) dx$$
 14. $I_{14} = \int_1^{+\infty} e - \left(1 + \frac{1}{x} \right)^x$

14.
$$I_{14} = \int_{1}^{+\infty} e - \left(1 + \frac{1}{x}\right)^{x}$$

7.
$$I_7 = \int_0^1 \ln x \, dx$$

15.
$$I_{15} = \int_{3}^{+\infty} (\ln(\ln x))^{-\ln x}$$

8.
$$I_8 = \int_0^1 (\ln(x+1) - \ln x) \, dx$$

16.
$$I_{16} = \int_{2}^{+\infty} (\ln x)^{-\ln(\ln x)}$$
.

Exercice 7 - Soit f une fonction continue sur [0,1]. On suppose que $\int_0^1 f(x) dx$ converge absolument.

- 1. Montrer que pour tout $n \in \mathbb{N}$, $\int_0^1 x^n f(x) dx$ converge.
- 2. Soit $\varepsilon > 0$
 - (a) Montrer qu'il existe $a \in]0,1[$ tel que pour tout $n \in \mathbb{N}, \left| \int_{-\infty}^{\infty} x^n f(x) \, \mathrm{d}x \right| < \frac{\varepsilon}{2}.$
 - (b) Ce a étant choisi, montrer qu'il existe un réel M tel que

$$\left| \int_0^a x^n f(x) \, \mathrm{d}x \right| \leqslant M \frac{a^{n+1}}{n+1}.$$

(c) Montrer que $\lim_{n \to +\infty} \int_0^1 x^n f(x) dx = 0$.

Exercice 8 – Soit, pour tout réel x pour lequel l'intégrale converge,

$$f(x) = \int_0^{+\infty} \frac{\ln(t+2)}{t^2 + x} dt$$

- 1. Déterminer le domaine de définition de f.
- 2. Déterminer $\lim_{x\to +\infty} f(x)$ (on pourra faire le changement de variables $u=\frac{t}{\sqrt{x}}$
- 3. Déterminer $\lim_{x\to 0^+} f(x)$.

Exercice 9 – Soit f une fonction de \mathbb{R}_+ dans \mathbb{R}_+ de classe \mathcal{C}^1 , telle qu'il existe $\alpha > 0$ tel que pour tout $x \in \mathbb{R}_+$, $f'(x) \geqslant \alpha$. Montrer que $\int_{-\pi^2}^{+\infty} \frac{f(x)}{x^2}$ diverge.

Exercice 10 - Nature et existence des intégrales suivantes :

1.
$$\int_{1}^{+\infty} \frac{2t \ln t}{(1+t^2)^2} dt$$
 4. $\int_{0}^{1} \frac{t^{\alpha} \ln t}{dt}$, $\alpha > -1$. 7. $\int_{0}^{+\infty} \frac{1}{x^2 + x + 1} dx$
2. $\int_{1}^{+\infty} \frac{1}{x^{\alpha} \sqrt{\ln x}} dx$ 5. $\int_{0}^{+\infty} \left(1 - x \operatorname{Arctan} \frac{1}{x}\right) dx$ 8. $\int_{1}^{2} \frac{dt}{\sqrt{(x-1)(x-2)}}$

$$J_{1} = xe^{\sqrt{\ln x}} \qquad J_{0} \qquad \qquad J_{0} \qquad \qquad \qquad 3. \int_{0}^{1} \frac{t \ln t}{(1 - t^{2})^{\frac{3}{2}}} dt \qquad 6. \int_{0}^{+\infty} \frac{1}{\sqrt{1 + e^{x}}} dx$$

- 1. Justifier la convergence et calculer la valeur de $\int_0^{+\infty} \frac{\mathrm{d}x}{1+x^3}$.
- 2. On pose, pour tout $n \in \mathbb{N}^*$, $I_n = \int_0^{+\infty} \frac{\mathrm{d}x}{(1+x^3)^n}$.
 - (a) Montrer que pour tout $n \in \mathbb{N}$, I_n converge.
 - (b) Montrer que pour tout $n \in \mathbb{N}$, $I_{n+1} = \frac{3n-1}{3n}I_n$.
 - (c) En déduire la valeur de I_n en fonction de n.

Exercice 12 – Pour tout $n \in \mathbb{N}$, on pose $I_n = \int_{-\infty}^{+\infty} t^n e^{\frac{-t^2}{2}} dt$. Convergence de I_n , et valeur.

Exercice 13 -

- 1. Justifier l'existence de $I = \int_0^{\frac{\pi}{2}} \ln(\sin x) \, dx$ et de $J = \int_0^{\frac{\pi}{2}} \ln(\cos x) \, dx$.
- 2. Montrer que I = J.
- 3. Du calcul de I+J, déduire la valeur de I.
- 4. justifier l'existence, et calculer la valeur de $\int_0^\pi \ln(1-\cos x) \ \mathrm{d}x$.

Exercice 14 - Comparaison par équivalences : un contre-exemple

- 1. Montrer que $\frac{\sin t}{t} \sim \frac{\sin t}{t} \left(1 + \frac{\sin t}{\ln t}\right) dt$
- 2. Montrer que $\int_{\pi}^{+\infty} \frac{\sin x}{x} dx$ converge.
- 3. (a) Montrer que $t\mapsto \frac{1}{t\ln t}$ est décroissante sur $[\pi,+\infty[$
 - (b) En déduire que pour tout $n \in \mathbb{N}^*$, $\int_{n\pi}^{(n+1)\pi} \frac{\sin^2 t}{t \ln t} dt \geqslant \frac{\pi}{2} \cdot \frac{1}{(n+1)\ln(n+1)}$
 - (c) En déduire que $\int_1^{+\infty} \frac{\sin^2 t}{t \ln t} dt$ diverge, puis que $\int_1^{+\infty} \frac{\sin t}{t} \left(1 + \frac{\sin t}{\ln t}\right) dt$ diverge.
- 4. Conclure.

Exercice 15 - On pose $F(x) = \int_{1}^{+\infty} \frac{\mathrm{d}t}{t^{x}(1+t)}$.

- 1. Déterminer l'ensemble de définition de F.
- 2. Étudier les variations de F.

- 3. Calculer, pour tout x pour lequel cette expression est définie, F(x) + F(x+1).
- 4. En déduire un équivalent de F au voisinage de 0, puis de $+\infty$.

Exercice 16 – Limite sous le signe somme : un contre-exemple Soit f une application de \mathbb{R}^+ dans \mathbb{R} , continue et bornée.

- 1. Justifier l'existence, pour tout $n \in \mathbb{N}$, de $\int_0^{+\infty} \frac{nf(x)}{1 + n^2x^2} dx$.
- 2. Justifier, pour tout $n \in \mathbb{N}^*$, l'égalité : $\int_0^{+\infty} \frac{nf(x)}{1+n^2x^2} dx = \int_0^{+\infty} \frac{f\left(\frac{t}{n}\right)}{1+t^2} dt$.
- 3. Montrer que $\lim_{n \to +\infty} \int_0^{+\infty} \frac{nf(x)}{1 + n^2 x^2} dx = \frac{\pi}{2} f(0)$.
- 4. Déterminer, pour tout $x \in \mathbb{R}_+^*$, $g(x) = \lim_{n \to +\infty} \frac{nf(x)}{1 + n^2 x^2} dx$.
- 5. Justifier que $\int_0^{+\infty} g(x)$ converge et donner sa valeur.
- 6. A-t-on $\lim_{n \to +\infty} \int_0^{+\infty} \frac{nf(x)}{1 + n^2 x^2} dx = \int_0^{+\infty} \lim_{n \to +\infty} \frac{nf(x)}{1 + n^2 x^2} dx$?

Exercice 17 – Soit n un entier positif ou nul, et $F_n: x \mapsto \int_0^{+\infty} \frac{\mathrm{d}t}{(t^2 + x^2)^n}$. On définit, pour tout $t \in \mathbb{R}_+$, la fonction f_t sur \mathbb{R} par $f_t(x) = \frac{1}{t^2 + x^2}$.

- 1. Domaine de définition de F_n ?
- 2. On suppose dorénavant que x > 0. Soit h un réel tel que $|h| < \frac{x}{2}$.
 - (a) Soit $t\in\mathbb{R}_+$. Soit M un majorant de f_t'' sur [x,x+h] (ou [x+h,x]). Justifier que :

$$\left| \frac{f_t(x+h) - f_t(x)}{h} - f_t'(x) \right| \leqslant \frac{h}{2} \cdot M.$$

- (b) Calculer f'_t , f''_t .
- (c) Montrer que pour tout y entre x et x+h, on a $|f''_t(y)| \le \frac{2n(t^2+4(2n+3)x^2)}{(t^2+\frac{x^2}{4})^{n+2}}$.
- (d) Montrer que $\int_0^{+\infty} \frac{2n(t^2 + 4(2n+3)x^2)}{(t^2 + \frac{x^2}{4})^{n+2}} dt$ converge
- (e) En déduire que F_n est dérivable en x et que

$$F'_n(x) = -2nx \int_0^{+\infty} \frac{1}{(t^2 + x^2)^{n+1}} = -2nx F_{n+1}(x)$$

3. Calculer, pour tout $x \in \mathbb{R}_+^*$, $F_1(x)$. En déduire que pour tout $n \in \mathbb{N}^*$, et tout $a \in \mathbb{R}_+^*$:

$$\int_0^{+\infty} \frac{1}{(t^2 + x^2)^n} = \binom{2n - 2}{n - 1} \frac{\pi}{(2x)^{2n - 1}}.$$