Correction du Devoir Surveillé n° 8 Épreuve de type « Ecricome »

Exercice 1 - (Ecricome 2006)

Exercice sans aucune difficulté, mais qui, d'après le rapport du jury, a été loin d'être bien traité par les candidats l'année où il est tombé...

A. Quelques propriétés de f^*

1. Soit $(x,y) \in (\mathbb{R}^3)^2$, de coordonnées X et Y. La matrice colonne des coordonnées de f(x) est MX, et celle des coordonnées de $f^*(y) = {}^t MY$. Ainsi :

$$\langle f(x), y \rangle = {}^{t}(MX)Y = {}^{t}X {}^{t}MY = \langle x, f^{*}(y) \rangle.$$

2. Soit g un endomorphisme vérifiant cette relation. Alors, pour tout $(x,y) \in (\mathbb{R}^3)^2$,

$$\langle f(x), y \rangle = \langle x, f^*(y) \rangle = \langle x, g(y) \rangle.$$

En particulier, en renommant pour plus de simplicité d'écriture (b_1, b_2, b_3) la base canonique,

$$\forall y \in \mathbb{R}^3, \ \forall i \in [1,3], \ \langle f^*(y), b_i \rangle = \langle g(y), b_i \rangle.$$

Or, la base canonique étant une base orthonormale, on en déduit que :

$$\forall y \in \mathbb{R}^3, \ f^*(y) = \sum_{i=1}^3 \langle f^*(y), b_i \rangle b_i = \sum_{i=1}^3 \langle g(y), b_i \rangle b_i = g(y).$$

Ainsi, $f^* = g$, ce qui prouve bien l'unicité de g vérifiant cette propriété.

- 3. Soit F un sous-espace vectoriel de \mathbb{R}^3 stable par f (c'est-à-dire tel que $f(F) \subset F$).
 - (a) Soit $(x,y) \in F \times F^{\perp}$. On a :

$$\langle x, f^*(y) \rangle = \langle f(x), y \rangle = 0,$$

car par stabilité de F, $f(x) \in F$, donc $f(x) \perp y$.

(b) Par conséquent, soit $y \in F^{\perp}$. Alors, pour tout $x \in F$, $\langle x, f^*(y) \rangle = 0$, donc $x \perp f^*(y)$. Cela étant vrai pour tout x de F, il en résulte que $f^*(y) \in F^{\perp}$. Ainsi, F^{\perp} est stable par f^* .

B. Réduction des matrices d'un ensemble ${\mathcal E}$

- 1. L'ensemble \mathcal{E} est évidemment un sous-ensemble de $\mathcal{L}(\mathbb{R}^3)$.
 - L'endomorphisme nul est clairement dans \mathcal{E} (avec a=b=c=0), donc $\mathcal{E}\neq\emptyset$
 - Soit f et g dans \mathcal{E} . Il existe u=(a,b,c) et v=(a',b',c') tels que $f=f_u$ et $g=f_v$. Soit $\lambda \in \mathbb{R}$. Alors la matrice de $f+\lambda g$ dans la base canonique est :

$$M_{u+\lambda v} = \begin{pmatrix} a + \lambda a' & b + \lambda b' & c + \lambda c' \\ c + \lambda c' & a + \lambda a' & b + \lambda b' \\ b + \lambda b' & c + \lambda c' & a + \lambda a' \end{pmatrix}$$

Ainsi, $f_u + \lambda f_v = f_{u+\lambda v}$, donc c'est aussi un élément de \mathcal{E} . Par conséquent, \mathcal{E} est un sous-espace vectoriel de $\mathcal{L}(\mathbb{R}^3)$.

Chirament tM M done t^* t

3. (a) Notons $[x]_{b.c.}$ le vecteur colonne des coordonnées d'un vecteur x dans la base canonique. On a, pour tout $u \in \mathbb{R}^3$:

$$[f_u(e_1)]_{\text{b.c.}} = \frac{1}{\sqrt{3}} \begin{pmatrix} a & b & c \\ c & a & b \\ b & c & a \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = \frac{1}{\sqrt{3}} \begin{pmatrix} a+b+c \\ a+b+c \\ a+b+c \end{pmatrix} = (a+b+c)e_1.$$

Comme e_1 est non nul, il en résulte que e_1 est un vecteur propre de f_u , associé à la valeur propre a+b+c.

(b) Soit $u \in \mathbb{R}^3$. Soit $x \in \mathcal{D}$. Il existe ν tel que $x = \nu e_1$. Comme e_1 est un vecteur propre associé à une certaine valeur propre λ , il vient

$$f_u(x) = \nu f_u(e_1) = \nu \lambda e_1 \in \mathcal{D}.$$

Ainsi, \mathcal{D} est stable par f_u .

- (c) Vous m'avez fait rectifier trop vite : il n'y avait pas d'étoile. Soit u dans \mathbb{R}^3 , u=(a,b,c), et soit v=(a,c,b). Alors \mathcal{D} est stable par f_v , donc \mathcal{D}^{\perp} est stable par $f_v^*=f_u$.
- (d) Soit $v \in \mathbb{R}^3$, de coordonnées $V = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$ dans la base canonique. Alors

$$v \in \mathcal{D}^{\perp} \iff v \perp \mathcal{D} \iff v \perp e_1 \iff \left\langle V, \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \right\rangle = 0 \iff x + y + z = 0.$$

Ainsi, \mathcal{D}^{\perp} est le plan d'équation x + y + z = 0.

(e) Les coordonnées $\begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}$ et $\begin{pmatrix} 1 \\ 1 \\ -2 \end{pmatrix}$ vérifient bien l'équation de la question précédente. Donc i-j et

i+j-2k sont des éléments de \mathcal{D}^{\perp} . De plus, e_2 et e_3 sont colinéaires respectivement à ces deux vecteurs. Donc ils sont dans \mathcal{D}^{\perp} .

Par ailleurs:

- $\langle e_2, e_3 \rangle = \frac{1}{\sqrt{12}} (1 1 \ 0) \begin{pmatrix} 1 \\ 1 \\ -2 \end{pmatrix} = 0;$
- $\langle e_2, e_2 \rangle = \frac{1}{2} (1 1 \ 0) \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} = 1$, donc $||e_2|| = \sqrt{1} = 1$
- $\langle e_3, e_3 \rangle = \frac{1}{6} (1 \ 1 \ -2) \begin{pmatrix} 1 \\ 1 \\ -2 \end{pmatrix} = 1$, donc $||e_3|| = \sqrt{1} = 1$

Donc (e_2, e_3) est une famille orthonormale de \mathcal{D}^{\perp} (donc en particulier libre), et de plus, \mathcal{D}^{\perp} étant le supplémentaire orthogonal dans \mathbb{R}^3 d'une droite, \mathcal{D}^{\perp} est de dimension 2. Ainsi, cette famille libre de cardinal 2 est une base de \mathcal{D}^{\perp} , et cette base est orthonormale.

On vérifie rapidement qu'on a aussi $||e_1||^2 = 1$, donc e_1 est un vecteur unitaire de la droite \mathcal{D} , donc (e_1) est une base orthonormale de \mathcal{D} . Ainsi, la juxtaposition d'une base orthonormale de \mathcal{D} et d'une base orthonormale de \mathcal{D}^{\perp} étant une base orthonormale de \mathbb{R}^3 , il en résulte que (e_1, e_2, e_3) est une base orthonormale de \mathbb{R}^3 .

- (f) Puisque e_1 est un vecteur propre de f_u , il existe e tel que $f_u(e_1) = ee_1 = ee_1 + 0e_2 + 0e_3$, d'où la première colonne.
 - Puisque \mathcal{D}^{\perp} est stable par $f_u, f_u(e_2) \in \mathcal{D}^{\perp}$, et comme (e_2, e_3) est une base de \mathcal{D}^{\perp} , il existe (f, h) des réels tels que

$$f_u(e_2) = 0e_1 + fe_2 + he_3,$$

d'où la deuxième colonne.

• De même pour $f_u(e_3)$.

Exercice 2 - (Ecricome 2009)

1. Domaine de définition de f

(a) La fonction exponentielle étant continue sur \mathbb{R}_+ , cette intégrale n'admet qu'une impropreté en $+\infty$. Soit $A \in \mathbb{R}^*_{\perp}$. Alors

$$\int_0^A e^{-at} dt = \left[-\frac{e^{-at}}{a} \right]_0^A = \frac{1}{a} (1 - e^{-aA}).$$

Cette expression admet une limite lorsque A tend vers $+\infty$, car -aA tend vers $-\infty$ (puisque a>0). Donc l'intégrale converge, et

$$\int_0^{+\infty} e^{-at} dt = \frac{1}{a}.$$

- (b) Soit x un réel fixé. Soit f_x la fonction définie sur \mathbb{R}_+ par : $\forall t \in \mathbb{R}_+$, $f_x(t) = e^{-2t} \sqrt{1 + x^2 e^{2t}}$.
 - La fonction f_x est continue sur \mathbb{R}_+ , donc l'intégrale admet une unique impropreté en $+\infty$. De plus, si x = 0, $\int_0^{+\infty} f_x(t) dt = \int_0^{+\infty} e^{-2t} dt$, et cette intégrale converge d'après la question précédente.

$$1 + x^2 e^{2t} \underset{t \infty}{\sim} x^2 e^{2t}$$
 donc: $\sqrt{1 + x^2 e^{2t}} \underset{t \infty}{\sim} |x| e^t$ donc: $f_x(t) \underset{t \infty}{\sim} |x| e^{-t}$.

Or, d'après la question 1(a), l'intégrale $\int_0^{+\infty} |x| e^{-t} dt$ converge, donc, par comparaison (les fonctions considérées étant positives), $\int_0^{+\infty} f_x(t) dt$ converge.

2. Branche infinie de la courbe représentative de f

(a) Soit x > 0 et $t \ge 0$. Toutes les quantités de l'encadrement à démontrer étant positives, cet encadrement équivaut à l'encadrement obtenu en élevant au carré :

$$x^2 e^{2t} \le 1 + x^2 e^{2t} \le \left(x e^t + \frac{e^{-t}}{2x}\right)^2 = x^2 e^{2t} + 1 + \frac{e^{-2t}}{4x^2}.$$

Cet encadrement est évidemment vérifié!

(b) L'encadrement de la question précédente amène :

$$\forall (x,t) \in \mathbb{R}_+^* \times \mathbb{R}_+, \quad xe^{-t} \leqslant f_x(t) \leqslant xe^{-t} + \frac{e^{-3t}}{2x},$$

d'où, en intégrant cette inégalité, par croissance de l'intégrale, et toutes les intégrales étant convergentes, d'après les questions 1(a) et 1(b),

$$\forall x \in \mathbb{R}_{+}^{*}, \ x \int_{0}^{+\infty} e^{-t} dt \leqslant f(x) \leqslant x \int_{0}^{+\infty} e^{-t} + \frac{1}{2x} \int_{0}^{+\infty} e^{-3t} dt.$$

En utilisant la question 1(a), il vient alors : $\forall x \in \mathbb{R}_+^*, x \leqslant f(x) \leqslant x + \frac{1}{6x}$.

(c) Nous avons donc, pour tout $x \in \mathbb{R}_+^*$

$$0 \leqslant f(x) \leqslant \frac{1}{6x},$$

donc, d'après le théorème d'encadrement, $\lim_{x\to +\infty} f(x) - x = 0$, donc la courbe de f admet en $+\infty$ une droite asymptote d'équation y = x, et se situe au dessus de cette asymptote.

3. Dérivabilité et monotonie de f

(a) Soit x strictement positif. La fonction $\varphi: t \mapsto xe^t$ est strictement croissante sur \mathbb{R}_+ , et de classe \mathcal{C}^1 , bijective de \mathbb{R}_+ sur $[x, +\infty[$. Ainsi, le changement de variable $u = xe^t$ est valide, et $du = xe^t dt$. On obtient:

3

$$f(x) = x^2 \int_0^{+\infty} \frac{1}{x^3 e^{3t}} \sqrt{1 + x^2 e^{2t}} x e^t dt = x^2 \int_x^{+\infty} \frac{1}{u^3} \sqrt{1 + u^2} du.$$

(b) • La fonction $u \mapsto \frac{1}{u^3} \sqrt{1 + u^2}$ étant continue entre 1 et x, pour tout x > 0, elle est primitivable, et une primitive (celle s'annulant en 1) est donnée par :

$$g: x \mapsto \int_1^x \frac{1}{u^3} \sqrt{1+u^2} \, \mathrm{d}u.$$

Cette primitive est donc de classe C^1 sur $]0, +\infty[$.

• Pour tout $x \in]0, +\infty[$,

$$h(x) = \int_{x}^{+\infty} \frac{1}{u^3} \sqrt{1 + u^2} \, du = \int_{1}^{+\infty} \frac{1}{u^3} \sqrt{1 + u^2} \, du - g(x) = C - g(x),$$

où C est une constante, et g est de classe C^1 sur $]0, +\infty[$. Donc h est de classe C^1 sur $]0, +\infty[$.

• Ainsi, f est le produit de la fonction « carré » et de la fonction h, toutes deux de classe C^1 sur $]0, +\infty[$, donc f est de classe C^1 sur $]0, +\infty[$.

Avec les notations précédentes, on a :

$$\forall x \in \mathbb{R}, \ f'(x) = 2x \int_{x}^{+\infty} \frac{1}{u^3} \sqrt{1 + u^2} \, du - x^2 g'(x) = \frac{2}{x} f(x) - \frac{x^2 \sqrt{1 + x^2}}{x^3} = \frac{2f(x) - \sqrt{1 + x^2}}{x}.$$

(c) On effectue une intégration par parties sur l'intégrale

$$I(x) = \int_{x}^{+\infty} \frac{\sqrt{1 + u^2}u^3}{\mathrm{d}u},$$

en posant les fonctions de classe \mathcal{C}^1 sur $[x, +\infty[$, définies pour tout $u \in [x, +\infty[$ par :

$$\alpha(u) = \sqrt{1 + u^2}, \qquad \alpha'(u) = \frac{u}{\sqrt{1 + u^2}}, \qquad \beta(u) = -\frac{1}{2u^2}, \qquad \beta'(u) = \frac{1}{u^3}.$$

On a:
$$\forall u \in [x, +\infty[, \alpha(t)\beta(t)] = -\frac{\sqrt{1+u^2}}{2u^2} \underset{u\infty}{\sim} -\frac{1}{2u}.$$

Ainsi, $\alpha\beta$ admet une limite, égale à 0, en $+\infty$. L'existence de cette limite nous autorise à faire l'intégration par parties directement sur -l'intégrale impropre, et on obtient :

$$I(x) = \left[-\frac{\sqrt{1+u^2}}{2u^2} - \right]_x^{\lim_{x \to \infty}} + \frac{1}{2} \int_x^{+\infty} \frac{\mathrm{d}u}{u\sqrt{1+u^2}} = \frac{\sqrt{1+x^2}}{2x^2} + \frac{1}{2} \int_x^{+\infty} \frac{\mathrm{d}u}{u\sqrt{1+u^2}}.$$

On obtient donc: $\forall x \in \mathbb{R}_+^*$, $2f(x) = 2x^2I(x) = \sqrt{1+x^2} + x^2 \int_x^{+\infty} \frac{\mathrm{d}u}{u\sqrt{1+u^2}}$

En reprenant la relation de la question 3(b), on obtient alors, pour tout x>0

$$f'(x) = x \int_{x}^{+\infty} \frac{\mathrm{d}u}{u\sqrt{1+u^2}}.$$

Puisque l'intégrande est strictement positive continue sur $[x, +\infty[$, l'intégrale est strictement positive, donc

$$\forall x > 0, \quad f'(x) > 0.$$

Ainsi, f est strictement croissante sur $]0, = \infty[$.

Cela dit, c'est bien compliqué pour en arriver là, car il suffisait de constater que si x < y, alors pour tout $t \in \mathbb{R}_+$, $f_x(t) < f_y(t)$, et la stricte positivité de l'intégrale permet de conclure...

4. Étude locale de f et f' en 0

(a) On refait une intégration par partie, en posant α et β les fonctions de classe \mathcal{C}^1 sur $[x, +\infty[$ définies de la façon suivante : pour tout $t \geqslant x$,

$$\alpha(u) = (1+u^2)^{-\frac{1}{2}}$$
 $\alpha'(u) = -u(1+u^2)^{-\frac{3}{2}}, \quad \beta(u) = \ln u, \quad \beta'(u) = \frac{1}{u}.$

Nous avons:

$$\forall u \in [x, +\infty[, \alpha(u)\beta(u) = (1+u^2)^{-\frac{1}{2}} \ln u \underset{u \to \infty}{\sim} \frac{\ln u}{u},$$

donc, d'après les croissances comparées, $\alpha\beta$ admet une limite nulle en $+\infty$. On peut donc encore une fois effectuer l'intégration par parties directement sur l'intégrale impropre, et

$$\int_{x}^{+\infty} \frac{\mathrm{d}u}{u\sqrt{1+u^2}} = \left[(1+u^2)^{-frac12} \ln u \right]_{x}^{\lim_{x \to +\infty}} + \int_{x}^{+\infty} \frac{u \ln u}{(1+u^2)^{\frac{3}{2}}} \, \mathrm{d}u = -\frac{\ln x}{\sqrt{1+x^2}} + \int_{x}^{+\infty} \frac{u \ln u}{(1+u^2)^{\frac{3}{2}}} \, \mathrm{d}u.$$

Remarquez que le théorème d'intégration par partie nous assure de la convergence en la borne $+\infty$ de l'intégrale obtenue. Ainsi, la fonction intégrée étant continue ailleurs, il suffit de vérifier la convergence de l'intégrale $\int_0^{+\infty} \frac{u \ln(u)}{(1+u^2)^{\frac{3}{2}}} \, \mathrm{d}u$ en la borne 0. Or, puisque $u \ln u \to 0$ en 0, la fonction $u \mapsto \frac{u \ln(u)}{(1+u^2)^{\frac{3}{2}}}$ peut se prolonger par continuité en 0 (en la définissant égale à 0 en 0). Ainsi, l'intégrale $\int_0^{+\infty} \frac{u \ln(u)}{(1+u^2)^{\frac{3}{2}}} \, \mathrm{d}u$ est faussement impropre en 0, donc convergente en cette borne.

(b) Lorsque $x \to 0^+$, $-\frac{\ln x}{\sqrt{1+x^2}}$ tend vers $-\infty$ et $\int_x^{+\infty} \frac{u \ln u}{(1+u^2)^{\frac{3}{2}}} du$. tend vers une limite finie, donc est négligeable devant $-\frac{\ln x}{\sqrt{1+x^2}}$. Ainsi, l'égalité de la question précédente amène :

$$\int_{x}^{+\infty} \frac{\mathrm{d}u}{u\sqrt{1+u^{2}}} \underset{x\to 0^{+}}{\sim} -\frac{\ln x}{\sqrt{1+x^{2}}} \underset{x\to 0^{+}}{\sim} -\ln x.$$

En revenant à l'expression de f' trouvée en 3(c), on en déduit que

$$f'(x) \underset{x \to 0^+}{\sim} -x \ln(x).$$

De même, on a:

$$x^{2} \int_{x}^{+\infty} \frac{\mathrm{d}u}{u\sqrt{1+u^{2}}} \underset{x\to 0^{+}}{\sim} -x^{2} \ln x, \quad \text{et} \quad \sqrt{1+x^{2}} - 1 \underset{0^{+}}{\sim} \frac{x^{2}}{2} = o(-x^{2} \ln x),$$

donc, d'après l'expression trouvée en 3(c),

$$2f(x)-1\mathop{\sim}_{x\to 0^+} -x^2\ln x \qquad \text{donc:} \qquad f(x)-\frac{1}{2}\mathop{\sim}_{x\to 0^+} -\frac{x^2\ln(x)}{2}.$$

(c) L'équivalent de f' nous assure, d'après les croissances comparées, que f' tend vers 0 en 0. Donc, d'après le théorème de prolongement des fonctions de classe \mathcal{C}^1 , la restriction $f_{|]0,+\infty[}$ se prolonge par continuité en une fonction g de classe \mathcal{C}^1 sur $[0,+\infty[$ et vérifiant g'(0)=0. Il suffit de montrer que ce prolongement par continuité coïncide avec f, donc que f est continue en 0.

Cela provient du deuxième équivalent, qui assure que f tend vers $\frac{1}{2}$ en 0, ce qui correspond au calcul direct de f(0) (question 1(a) avec a=2).

Ainsi, $f_{|[0,+\infty[}$ est de classe \mathcal{C}^1 , donc f est dérivable à droite en 0 avec

$$f'_d(0) = 0 = \lim_{x \to 0^+} f'(x).$$

Par parité, on a aussi la dérivabilité à gauche, et les égalités :

$$f'_g(0) = 0 = \lim_{x \to 0^-} f'(x).$$

Ainsi, puisque $f_d'(0)=f_g'(0)=0,\,f$ est dérivable en 0, et les limites ci-dessus amènent :

$$f'(0) = 0 = \lim_{x \to 0} f'(x).$$

Ainsi, f est dérivable en 0, et f' est continue en 0.

Comme on avait déjà le caractère \mathcal{C}^1 sur $]0, +\infty[$, on en déduit que f est de classe \mathcal{C}^1 sur $[0, +\infty[$, et même sur \mathbb{R} , par parité.

Problème - (Ecricome 2007) -

Préliminaire

1. La définition de la covariance amène, pour toutes variables admettant une variance :

$$cov(X, X) = E(X^2) - E(X)^2 = V(X).$$

De plus, on a clairement cov(X,Y) = cov(Y,X), et par linéarité de l'espérance, $cov(\lambda X + X',Y) = \lambda cov(X,Y) + cov(X',Y)$, et de même pour la deuxième variable (à redémontrer, car ce n'est au programme que pour les variables discrètes). Donc, on peut utiliser la propriété de bilinéarité de la covariance pour obtenir :

$$V(\lambda X + Y) = \operatorname{cov}(\lambda X + Y, \lambda X + Y) = \lambda^2 \operatorname{cov}(X, X) + 2\lambda \operatorname{cov}(X, Y) + \operatorname{cov}(Y, Y) = \lambda^2 V(X) + 2\lambda \operatorname{cov}(X, Y) + V(Y).$$

2. (a) Soit X et Y deux variables aléatoires fixées admettant une variance. La variance étant toujours positive, le polynôme ci-dessus en λ est toujours positif ou nul, et donc admet au plus une racine réelle. Ainsi, son discriminant Δ est négatif ou nul, donc :

$$0 \geqslant \Delta = 4\operatorname{cov}(X, Y)^2 - 4V(X)V(Y),$$
 donc: $V(X)V(Y) \leqslant \operatorname{cov}(X, Y)^2.$

(b) Cette inégalité est une égalité si et seulement $\Delta=0$, donc si et seulement si il existe une valeur (unique) λ telle que $V(\lambda X+Y)=0$, donc telle que $\lambda X+Y$ soit une variable quasi-certaine de valeur C. Ainsi, Y dépend de X de façon affine (presque sûrement) : $Y=C-\lambda X$.

Partie I – Étude d'une fonction de deux variables

- 1. Sur l'ouvert $]0, A[\times]0, +\infty[L_n \text{ coïncide avec la fonction } (a, b) \mapsto \frac{1}{b^n} e^{-\frac{1}{b}(-na+S)}.$
 - La fonction $b \mapsto \frac{1}{b^n}$ est de classe \mathcal{C}^1 sur $]0, +\infty[$, donc la fonction de deux variables $(a, b) \mapsto \frac{1}{b^n}$ est de classe \mathcal{C}^1 sur $]0, A[\times]0, +\infty[$.
 - La fonction (polynomiale) $(a,b) \mapsto -na+S$ est de classe \mathcal{C}^1 sur $]0, A[\times]0, +\infty[$, ainsi que la fonction $(a,b) \mapsto \frac{1}{b}$ (pour la même raison que le premier point). Ainsi la fonction $(a,b) \mapsto -\frac{1}{b}(-na+S)$ est de classe \mathcal{C}^1 sur $]0, A[\times]0, +\infty[$, en tant que produit de deux fonctions qui le sont.
 - La fonction exponentielle est de classe \mathcal{C}^1 sur son domaine, donc, par composition, la fonction $(a,b) \mapsto e^{-\frac{1}{b}(-na+S)}$ est de classe \mathcal{C}^1 sur $]0, A[\times]0, +\infty[$.
 - Ainsi, L_n est de classe \mathcal{C}^1 sur $]0, A[\times]0, +\infty[$, en tant que produit de deux fonctions qui le sont.
 - De plus, $]0, A[\times]0, +\infty[$ est un ouvert en tant que produit cartésien de deux ouverts. La fonction L_n étant de classe \mathcal{C}^1 sur $]0, A[\times]0, +\infty[$, on peut calculer ses dérivées partielles :

$$\forall (a,b) \in]0, A[\times]0, +\infty[, \quad \partial L_n \partial a(a,b) = \frac{n}{h^{n+1}} e^{-\frac{1}{b}(-na+S)}$$

Ce calcul est suffisant, puisque cette dérivée partielle ne peut pas s'annuler sur $]0, A[\times]0, +\infty[$ (elle est toujours strictement positive). Ainsi, ∇L_n ne s'annule pas sur $]0, A[\times]0, +\infty[$, donc L_n , de classe \mathcal{C}^1 sur un ouvert, n'admet pas de point critique sur cet ouvert, donc pas d'extremum local (donc a fortiori pas d'extremum global) sur cet ouvert.

2. Soit b>0 fixé. Alors la fonction $a\mapsto -\frac{1}{b}(-na+S)$ est strictement croissante sur [0,A] (droite de coefficient directeur $\frac{n}{b}>0$), donc, l'exponentielle étant croissante, et b étant fixé, la fonction $a\mapsto L_n(a,b)$ est strictement croissante sur [0,A]. On en déduit que :

$$\forall a \in [0, A[, L_n(a, b) \leq L_n(A, b).$$

Cela est vrai quelle que soit la valeur fixée de b dans $]0, +\infty[$. Ainsi :

$$\forall a \in [0, A[, \forall b \in]0, +\infty[, L_n(a, b) < L_n(A, b).$$

Soit maintenant $a \in]A, +\infty[$, et b > 0. Alors $L_n(a, b) = 0$ et $L_n(A, b) > 0$, donc on a encore $L_n(a, b) < L_n(A, b)$.

3. La fonction g est définie par :

$$\forall b \in]0, +\infty[, g(b) = \frac{1}{b^n} e^{-\frac{1}{b}(-nA+S)}.$$

g est une fonction de classe C^1 sur $]0, +\infty[$, et :

$$\forall b \in]0, +\infty[, \ g'(b) = \frac{-n}{b^{n+1}} e^{-\frac{1}{b}(-nA+S)} + \frac{-nA+S}{b^2 b^n} e^{-\frac{1}{b}(-nA+S)} = \frac{-n(A+b)+S}{b^{n+2}} e^{-\frac{1}{b}(-nA+S)}.$$

Puisque par hypothèse, S-nA>0, la fonction g est donc strictement croissante sur $]0,\frac{S-nA}{n}]$ et strictement décroissante sur $]\frac{S-nA}{n},+\infty[$. Ainsi, g admet un maximum absolu sur $]0,+\infty[$ au point $b_0=\frac{S-An}{n}=\frac{S}{n}-A.$

4. Soit alors un point (a,b) quel conque de $]0,+\infty[\times]0,+\infty[$. Alors

$$L_n(a,b) \leqslant L_n(A,b) = g(b) \leqslant g(b_0) = L_n(A,b_0).$$

De plus, si $(a,b) \neq (A,b_0)$, soit $a \neq A$, et dans ce cas, la première inégalité est stricte, soit $b \neq b_0$, et dans ce cas, la deuxième inégalité est stricte. Ainsi, on a, pour tout $(a,b) \in (\mathbb{R}_+^*)^2$, $L_n(a,b) \leq L_n(A,b_0)$, avec égalité si et seulement si $(a,b) = (A,b_0)$. Donc L_n présente au point (A,b_0) (et en ce seul point) un maximum absolu. On a donc $a_0 = A$ et $b_0 = \frac{S}{n} - A$.

Partie II - Étude d'une loi

- 1. $f_{a,b}$ est évidemment positive ou nulle sur \mathbb{R}
 - $f_{a,b}$ est continue sur $]-\infty, a[$ (coïncide sur cet <u>ouvert</u> avec la fonction nulle) et sur $]a, +\infty[$ (coïncide sur cet ouvert avec la fonction $x\mapsto \frac{1}{b}e^{-\frac{x-a}{b}}$, continue, en tant que composée de fonctions continues). Donc $f_{a,b}$ admet au plus un point de discontinuité, au point a. Donc $f_{a,b}$ est continue presque partout.
 - On a :

$$\int_{-\infty}^{+\infty} f_{a,b}(x) \, \mathrm{d}x = \frac{1}{b} \int_{a}^{+\infty} \mathrm{e}^{-\frac{x-a}{b}} \, \mathrm{d}x.$$

Effectuons le changement de variable affine strictement croissant (donc valide) t = x - ab, donc dx = b dt. La nature de l'intégrale ci-dessus est alors la même que la nature de l'intégrale

$$\int_0^{+\infty} e^{-t} b \, dt,$$

qui est convergente en tant qu'intégrale $\Gamma(1)$. Ainsi, $\int_{-\infty}^{+\infty} f_{a,b}(x) dx$ converge, et

$$\int_{-\infty}^{+\infty} f_{a,b}(x) \, dx = \frac{1}{b} \cdot b \cdot \Gamma(1) = \Gamma(1) = 0! = 1.$$

Donc $f_{a,b}$ est bien une densité de probabilité.

2. On a, pour tout x < a, $F_X(x) = 0$, et:

$$\forall x \geqslant a, \ F_X(x) = \frac{1}{b} \int_a^x e^{-\frac{t-a}{b}} dt = \left[-e^{-\frac{t-a}{b}} \right]_a^x = 1 - e^{-\frac{x-a}{b}}.$$

3. On pose Y = X - a. On a, pour tout $y \text{ de } \mathbb{R}$:

$$P(Y\leqslant y)=P(X-a\leqslant y)=P(X\leqslant a+y)=F_X(a+y)\begin{cases} 1-\mathrm{e}^{-\frac{a+y-a}{b}}=1-\mathrm{e}^{-\frac{y}{b}} & \text{si } a+y\geqslant a \text{ i.e. } y\geqslant 0\\ 0 & \text{sinon.} \end{cases}$$

On reconnaît la fonction de répartition d'une variable suivant une loi exponentielle de paramètre $\frac{1}{b}$: $X - a \hookrightarrow \mathcal{E}\left(\frac{1}{b}\right)$.

Ainsi,
$$E(Y) = b$$
 et $V(Y) = b^2$, donc $E(X) = E(Y) + a = b + a$ et $V(X) = V(Y) = b^2$.

4. Soit $p \in \mathbb{N}$, Par le changement de variables $y = \frac{x-a}{b}$, l'intégrale $I_p = \frac{1}{b} \int_a^{+\infty} x^p e^{-\frac{x-a}{b}} dx$ est de même nature que l'intégrale $\frac{1}{b} \int_0^{+\infty} (by + a)^p e^{-y} dy$.

Or, cette intégrale possède une seul impropreté en $+\infty$, par continuité de l'intégrande sur $[0, +\infty[$, et

$$(by+a)^p e^{-y} \sim_{y\to+\infty} b^p y^p$$
.

Ainsi, les fonctions ci-dessus étant positives, l'intégrale $\frac{1}{b} \int_a^{+\infty} x^p \mathrm{e}^{-\frac{x-a}{b}} \, \mathrm{d}x$ est de même nature que $\int_0^{+\infty} y^p \mathrm{e}^{-y} \, \mathrm{d}y$, qui converge en tant qu'intégrale $\Gamma(p+1)$, avec p+1>0. Ainsi, X admet un moment d'ordre p, pour tout $p \in \mathbb{N}$.

Soit $p \ge 1$. On effectue une intégration par parties sur I_p , en posant les fonctions de classe \mathcal{C}^1 sur $[a, +\infty[$:

$$\forall x \in [a, +\infty[, u(x) = x^p \qquad u'(x) = px^{p-1} \qquad v(x) = -be^{-\frac{x-a}{b}} \qquad v'(x) = e^{-\frac{x-a}{b}}.$$

D'après les croissances comparées, $\lim_{x\to +\infty} u(x)v(x)=0$, donc on peut faire l'intégration par parties sur l'intégrale impropre directement, et :

$$E(X^{p}) = I_{p} = \frac{1}{b} \left[-bx^{p} e^{-\frac{x-a}{b}} \right]_{a}^{\lim_{n \to \infty} + \frac{1}{b}} \int_{a}^{+\infty} bpx^{p-1} e^{-\frac{x-a}{b}} dx = a^{p} + bpE(X^{p-1}).$$

- 5. Simulation de la loi $\mathcal{E}(a,b)$.
 - (a) Soit U une variable aléatoire de loi uniforme sur [0,1[. On a alors :

$$\forall y \in \mathbb{R}, \quad F_U(y) = \begin{cases} 0 & \text{si } y < 0 \\ y & \text{si } y \in [0, 1[\\ 1 & \text{si } y \geqslant 1. \end{cases}$$

Soit $X = -b \ln(1-U) + a$. On a $U(\Omega) = [0, 1[$, donc $\ln(1-U)(\Omega) =] - \infty, 0]$, donc $X(\Omega) = [a, +\infty[$, puisque b > 0.

Ainsi, pour tout x < a, $F_X(a) = 0$.

Soit $x \geqslant a$. Alors:

$$P(X \le x) = P(-b\ln(1-U) + a \le x) = P(-b\ln(1-U) \le x - a) = P(\ln(1-U) \ge -\frac{x-a}{b})$$
$$= P(1-U \ge e^{-\frac{x-a}{b}}) = P(U \le 1 - e^{-\frac{x-a}{b}}).$$

Comme $x\geqslant a,\;-\frac{x-a}{b}\leqslant 0,\;\mathrm{donc}\;\mathrm{e}^{-\frac{x-a}{b}}\in]0,1],\;\mathrm{donc}\;1-\mathrm{e}^{-\frac{x-a}{b}}\in[0,1[.\;\mathrm{Ainsi}:]]$

$$F_X(x) = F_U\left(1 - e^{-\frac{x-a}{b}}\right) = 1 - e^{-\frac{x-a}{b}}.$$

On reconnaît donc la fonction de répartition d'une variable aléatoire suivant une loi $\mathcal{E}(a,b)$. Par conséquent, $-b \ln(1-U) + a \hookrightarrow \mathcal{E}(a,b)$.

(b) function tirage(a,b:real):real;
 begin
 tirage:= -b * ln(1-random)+a;
 end;

Partie III – Estimation des paramètres a et b

1. begin
 randomize;
 readln(a,b,n);
 X:=tirage(a,b);
 S:=X;

```
Y:=X;
for i:=2 to n do
  begin
    X:=tirage(a,b);
    S:=S+X;
    if X > Y then Y:=X;
end;
```

- 2. On a, par linéarité de l'espérance : $E(S_n) = \sum_{i=1}^n E(X_i) = n(a+b)$.
 - Les variables X_i étant mutuellement indépendantes, on a : $V(S_n) = \sum_{i=1}^n V(X_i) = nb^2$.
- 3. Pour tout $i \in [1, n]$, $X_i a \hookrightarrow \mathcal{E}\left(\frac{1}{b}\right) = \Gamma(b, 1)$, et ces variables sont mutuellement indépendantes. Donc, par stabilité de la loi Γ ,

$$(X_1-a)+(X_2-a)+\cdots+(X_n-a)\hookrightarrow\Gamma(b,n)$$
 donc: $S_n-na\hookrightarrow\Gamma(b,n)$

On en déduit que pour tout $x \in \mathbb{R}$, si F désigne la fonction de répartition d'une variable suivant la loi $\Gamma(b,n)$:

$$P(S_n \leqslant x) = P(S_n - na \leqslant x - na) = F(x - na).$$

Par dérivation (presque partout), on obtient une densité de \mathcal{S}_n :

$$\forall x \in \mathbb{R}, \ f_{S_n}(x) = f(x - na),$$

où f est une densité d'une variable suivant $\Gamma(b,n)$. Ainsi

$$\forall x \in \mathbb{R}, \ f_{S_n}(x) = \frac{(x - na)^{n-1}}{b^n \Gamma(n)} e^{-\frac{x - na}{b}} = \frac{(x - na)^{n-1}}{b^n (n-1)!} e^{-\frac{x - na}{b}}.$$

4. Soit $x \in \mathbb{R}$. Alors

end.

$$P(Y_n \le x) = 1 - P(Y_n > x) = 1 - P\left(\bigcap_{i=1}^n [X_i > x]\right) = 1 - \prod_{i=1}^n P(X_i > x),$$

par mutuelle indépendance des X_i . Ainsi

$$P(Y_n \le x) = 1 - (1 - F_X(x))^n = 1 - \left(e^{-\frac{x-a}{b}}\right)^n = 1 - e^{-\frac{x-a}{b/n}}.$$

Ainsi, Y_n suit une loi $\mathcal{E}\left(a, \frac{b}{n}\right)$.

On en déduit : $E(Y_n) = a + \frac{b}{n}$ et $V(Y_n) = \frac{b^2}{n^2}$.

5. (a) On a donc:

$$b_{Y_n}(a) = E(Y_n) - a = \frac{b}{n}$$
 et $r_{Y_n}(a) = V(Y_n) + b_{Y_n}(a)^2 = \frac{2b^2}{n^2}$.

(b) Soit X une variable admettant un moment d'ordre 2. L'inégalité de Markov s'écrit, pour une variable positive, d'espérance non nulle :

$$P(X \geqslant \lambda E(X)) \leqslant \frac{1}{\lambda}.$$

On a vu également le corollaire suivant (obtenu en posant $\lambda = \frac{1}{E(X)}$) :

$$P(X \geqslant \varepsilon) \leqslant \frac{E(X)}{\varepsilon}.$$

Ainsi, étant donné $\varepsilon > 0$,

$$P(|Y_n - a| \geqslant \varepsilon) = P((Y_n - a)^2 \geqslant 2) \leqslant \frac{E((Y_n - a)^2)}{\varepsilon^2} = \frac{r_{Y_n}(a)}{\varepsilon^2}.$$

Ainsi, d'après le théorème d'encadrement, le risque quadratique étant de limite nulle, et les probabilités étant positives, on en déduit que

$$\lim_{n \to +\infty} P(|Y_n - a| \geqslant \varepsilon) = 0.$$

De plus, la limite du biais est nulle aussi, donc Y_n est une suite d'estimateurs de a, asymptotiquement sans biais, et convergente.

6. On pose $Z_n = \frac{S_n}{n} - Y_n$.

(a) On a:
$$E(Z_n) = \frac{E(S_n)}{n} - E(Y_n) = (a+b) - a - \frac{b}{n} = b\left(1 + \frac{1}{n}\right)$$
, donc:

$$b_{Z_n}(b) = b + \frac{b}{n} - b = \frac{b}{n}.$$

(b) On a:

$$V(Z_n) = V\left(\frac{S_n}{n} - Y_n\right) = V\left(\frac{S_n}{n}\right) + V(Y_n) - 2\text{cov}\left(\frac{S_n}{n}, Y_n\right) = \frac{b^2}{n} + \frac{b^2}{n^2} - \frac{2}{n}\text{cov}(S_n, Y_n).$$

Ainsi,

$$r_{Z_n}(b) = V(Z_n) + b_{Z_n}(b) = \frac{b^2}{n} + \frac{b^2}{n^2} - \frac{2}{n} \operatorname{cov}(S_n, Y_n) + \frac{b^2}{n^2} = \frac{2b^2}{n^2} + \frac{b^2}{n} - \frac{2}{n} \operatorname{cov}(S_n, Y_n).$$

(c) D'après le prélimiaire, on a :

$$|\operatorname{cov}(S_n, Y_n)| \leqslant \sqrt{V(S_n)V(Y_n)} = \sqrt{nb^2} \cdot \frac{b}{n} = \frac{b^2}{\sqrt{n}}$$

Donc $cov(S_n, Y_n)$ tend vers 0. Il en est de même des autres termes de $r_{Z_n}(b)$, donc

$$\lim_{n \to +\infty} r_{Z_n}(b) = 0$$

On a clairement $\lim_{n\to+\infty} b_{Z_n}(b) = 0$, donc (Z_n) est asymptotiquement sans biais, et en utilisant le même raisonnement que précedemment (à l'aide de l'inégalité de Markov), pour tout > 0:

$$0 \leqslant P(|Z_n - b| \geqslant \varepsilon) = P((Z_n - b)^2 \geqslant \varepsilon^2) \leqslant \frac{E((Z_n - b)^2)}{2} = \frac{r_{Z_n}(b)}{\varepsilon^2} \to 0,$$

d'où la convergence de (Z_n) en tant que suite d'estimateurs de b.

7. Pour un échantillon donné (x_1, \ldots, x_n) , avec $\min\{x_1, \ldots, x_n\} \neq \max\{x_1, \ldots, x_n\}$, correspondant à une réalisation des n variables aléatoires X_1, \ldots, X_n , on définit la fonction L sur $[0, +\infty[\times]0, +\infty[$ par :

$$L(a,b) = \prod_{i=1}^{n} f_{a,b}(x_i).$$

(a) On a, si $\min(x_1, \ldots, x_n) \ge a$ (donc si pour tout $i, x_i \ge a$: (donc $x_i \ge a$):

$$L(a,b) = \prod_{i=1}^{n} f_{a,b}(x_i) = \prod_{i=1}^{n} \frac{1}{b} e^{-\frac{x_i - a}{b}} = \frac{1}{b^2} e^{-\sum_{i=1}^{n} \frac{x_i - a}{b}} = \frac{1}{b^2} e^{-\frac{S - na}{b}},$$

où $S = \sum_{i=1}^{n} x_i$. En revanche, si $\min(x_1, \dots, x_n) < a$, il existe i tel que $x_i < a$, et $f_{a,b}(x_i) = 0$, donc L(a,b) = 0. Ainsi, la fonction L est égale à L_n avec $S = x_1 + \dots + x_n$, et $A = \min(x_1, \dots, x_n)$. Ces valeurs S et A vérifient bien

$$S = \sum_{i=1}^{n} x_i > \sum_{i=1}^{n} \min(x_1, \dots, x_n) = nA,$$

l'inégalité étant stricte, car la minoration est stricte pour au moins un des termes x_i , puisque $\min(x_1,\ldots,x_n) \neq \max(x_1,\ldots,x_n)$.

(b) L'estimation de a obtenue à l'aide de Y_n est :

$$\tilde{a} = Y_n(\omega) = \min(X_1(\omega), \dots, X_n(\omega)) = \min(x_1, \dots, x_n) = A = a_0.$$

et l'estimation de b est :

$$\tilde{b} = Z_n(\omega) = \frac{S_n(\omega)}{n} - Y_n(\omega) = \frac{x_1 + \dots + x_n}{n} - \min(x_1, \dots, x_n) = \frac{S_n(\omega)}{n} - A = b_0.$$