${
m ECS}\ 2-{
m Math\'ematiques}$ ${
m Nom}\ :$

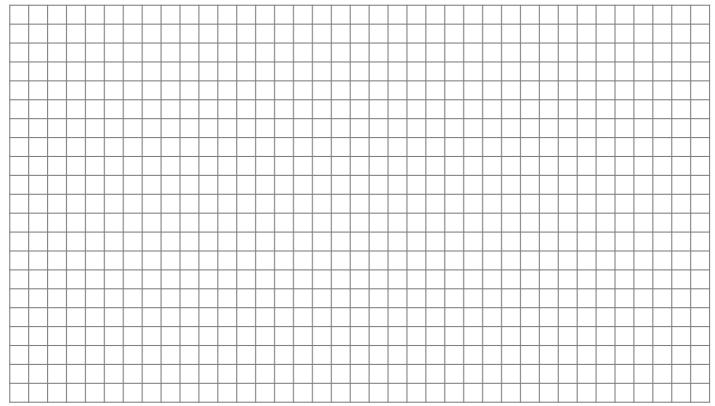
Prénom :

Interrogation n° 3 (30 minutes) Diagonalisation, produits scalaires

37	
Note sur 40 :	Observations:
N-+ 20	
Note sur 20:	
Rang:	
100118	

1. Soit φ la forme bilinéaire sur \mathbb{R}^4 canoniquement associée à la matrice $M = \begin{pmatrix} 1 & -1 & -1 & 1 \\ -1 & 2 & -1 & -2 \\ -1 & -1 & 9 & -1 \\ 1 & -2 & -1 & 6 \end{pmatrix}$. Montrer que φ est un

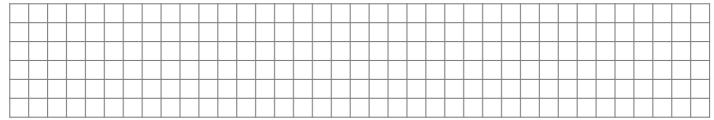
produit scalaire sur \mathbb{R}^4 .



2. Définition d'une famille orthonormale.

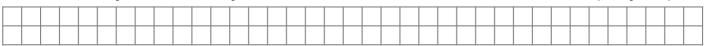


3. Que dire de la liberté d'une famille orthogonale? (avec preuve) $\,$

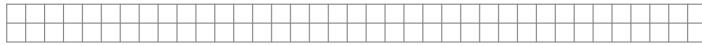


4. Soit E un espace vectoriel de dimension finie, muni d'un produit scalaire noté $\langle -, - \rangle$, et soit $\mathcal{B} = (b_1, \cdots, b_n)$ une base orthonormale de E.

Donner à l'aide du produit scalaire l'expression des coordonnées d'un vecteur X de E dans la base \mathcal{B} (sans preuve)



5. Inégalité de Cauchy Schwarz (générale) et cas d'égalité (sans démonstration)



6. La matrice $A = \begin{pmatrix} 0 & 2 & -1 & 1 \\ 2 & 3 & -2 & 2 \\ 1 & 2 & -2 & 1 \\ 1 & 2 & -1 & 0 \end{pmatrix}$ est-elle diagonalisable? Si oui, déterminer une matrice inversible P et une matrice

diagonale D telles que $A = PDP^{-1}$ (on ne demande pas de calculer P^{-1})

