Algèbre 5 – Orthogonalité

Exercice 1 – Les familles suivantes sont-elles des bases orthogonales de \mathbb{R}^3 (muni du produit scalaire usuel)? Sont-elles orthonormales?

$$1. \left(\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} \right) \qquad 2. \left(\begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ -1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} \right).$$

Exercice 2 – Déterminer une base de l'orthogonal de F dans E dans les cas suivants :

1.
$$E = \mathbb{R}^3$$
, ps canonique, $F = \text{Vect}\begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix}$;

2. $E = \mathbb{R}^3$, ps canonique, $F = \text{Vect}\begin{pmatrix} 1 \\ 1 \\ 2 \\ 0 \\ 1 \end{pmatrix}$, $\begin{pmatrix} 1 \\ 1 \\ 2 \\ 2 \\ 2 \end{pmatrix}$

2. $E = \mathbb{R}^3$, ps canonique, $F = \text{Vect}\begin{pmatrix} 1 \\ 1 \\ 1 \\ 2 \\ 2 \\ 2 \end{pmatrix}$

4. $E = \mathbb{R}_3[X]$, $\langle P, Q \rangle = \int_0^1 P(t)Q(t) \, dt$, $F = \text{Vect}(X, X^2 + 1)$.

Exercice 3 -

- 1. Déterminer un produit scalaire φ sur \mathbb{R}^2 tel que $\begin{pmatrix} 1 \\ 1 \end{pmatrix} \perp \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ pour ce produit scalaire. On pourra exprimer la matrice de φ dans la base canonique de \mathbb{R}^2 .
- 2. On demande de plus que $\binom{2}{1} \perp \binom{0}{1}$. Déterminer un produit scalaire convenable.
- 3. On demande en plus de l'hypothèse de la question 1 que $\binom{-2}{1} \perp \binom{0}{1}$. Peut-on trouver un tel produit scalaire?

Exercice 4 -

- 1. Soit \mathcal{B} la base canonique de \mathbb{R}^3 , et $\mathcal{C} = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix}$. Montrer qu'il existe un unique produit scalaire φ sur \mathbb{R}^3 dont on exprimera la matrice dans la base canonique \mathcal{B} , tel que \mathcal{C} soit une base orthonormale de \mathbb{R}^3 .
- 2. Plus généralement, soit E un espace vectoriel de dimension finie, et soit \mathcal{B} une base de E. Justifier qu'il existe un unique produit scalaire sur E tel que \mathcal{B} soit une base orthonormale pour ce produit scalaire.

Exercice 5 – Déterminer une base orthonormale du sous-espace F de E dans les cas suivants :

1.
$$E = \mathbb{R}^3$$
, ps canonique, $F = \text{Vect}\left(\begin{pmatrix} 1\\0\\1 \end{pmatrix}, \begin{pmatrix} 1\\2\\0 \end{pmatrix}\right)$
2. $E = \mathbb{R}^4$, ps canonique, $F = \text{Vect}\left(\begin{pmatrix} 1\\0\\1\\1 \end{pmatrix}, \begin{pmatrix} 1\\1\\0\\0 \end{pmatrix}, \begin{pmatrix} 0\\1\\1\\0 \end{pmatrix}\right)$

3.
$$E = \mathbb{R}_3[X]$$
, muni de $\langle P, Q \rangle = \int_{-1}^1 P(t)Q(t) \, dt$, $F = \text{Vect}(1, X, X^2)$.

Exercice 6 – Soit, F le sev de \mathbb{R}^4 défini par $F = \text{Vect}\left(\begin{pmatrix} 1\\1\\0\\0 \end{pmatrix}, \begin{pmatrix} -1\\1\\1\\0 \end{pmatrix}, \begin{pmatrix} 0\\1\\0\\1 \end{pmatrix}\right)$. Soit $X = \begin{pmatrix} 1\\2\\3\\4 \end{pmatrix}$. Déterminer le projeté orthogonal Y de X sur F.

Exercice 7 – Soient $n \in \mathbb{N}^*$, et a_0, a_1, \ldots, a_n des réels.

- 1. Montrer que l'application $(P,Q) \mapsto \sum_{k=0}^{n} P^{(k)}(a_k)Q^{(k)}(a_k)$ définit un produit scalaire sur $\mathbb{R}_n[X]$.
- 2. On suppose dans cette question que n=2, $a_0=1$, $a_1=2$ et $a_2=3$. Déterminer une base orthonormale de $\mathbb{R}_2[X]$.

Exercice 8 – Soit Q l'application définie sur \mathbb{R}^2 par : $\forall X = \begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{R}^2$, $Q(X) = 2x^2 + 5y^2 - 2xy$.

- 1. Justifier que pour tout $X \in \mathbb{R}^2$, $Q(X) \geqslant 0$.
- 2. On définit, pour tout $X \in \mathbb{R}^2$, $N(X) = \sqrt{Q(X)}$. Montrer que N est une norme euclidienne sur \mathbb{R}^2 .
- 3. Déterminer une base orthonormale de \mathbb{R}^2 pour le produit scalaire associé à N.

Exercice 9 – Soit E un espace vectoriel sur \mathbb{R} , muni d'un produit scalaire $\langle \cdot, \cdot \rangle$. Soient F et G des sous-espaces vectoriels de E.

- 1. Montrer que si $F \subset G$, alors $G^{\perp} \subset F^{\perp}$.
- 2. Montrer que $(F+G)^{\perp} = F^{\perp} \cap G^{\perp}$.

Exercice 10 – Soit $E = \mathbb{R}[X]$. On pose, pour tout $n \in \mathbb{N}$, $P_n = (X^2 - 1)^n$ et $Q_n = P_n^{(n)}$ (polynômes de Legendre).

1. Vérifier que l'application $\varphi:E^2\to\mathbb{R}$ définie pour tout $(P,Q)\in E^2$ par

$$\varphi(P,Q) = \int_{-1}^{1} P(t)Q(t) dt$$

est un produit scalaire sur E.

On suppose désormais E muni de ce produit scalaire, et on note $\Phi(P,Q) = \langle P,Q \rangle$.

- 2. Calculer Q_0 , Q_1 , Q_2 .
- 3. Déterminer les éventuelles racines de P_n , ainsi que leur ordre de multiplicité.
- 4. Déterminer le degré de Q_n et son coefficient dominant.
- 5. Prouver, par récurrence sur k, que, pour tout entier $k \in [0, n]$, $P_n^{(k)}$ admet au moins k racines réelles distinctes dans]-1,1[.
- 6. À l'aide d'intégrations par parties, prouver que pour tout couple $(n,m) \in \mathbb{N}^2$ tel que $n \geqslant m$,

$$\langle Q_n, Q_m \rangle = (-1)^m (2m)! \int_{-1}^1 P_n^{(n-m)}(t) dt.$$

En déduire que $(Q_n)_{n\in\mathbb{N}}$ est une famille orthogonale.

- 7. Calculer, pour tout $n \in \mathbb{N}$, $||Q_n||$.
- 8. Soit $n \in \mathbb{N}$. On pose, pour tout entier $k \in [0, n]$, $W_k = \frac{Q_k}{\|Q_k\|}$. Démontrer que (W_0, \dots, W_n) est une base orthonormale du sev $\mathbb{R}_n[X]$ de $\mathbb{R}[X]$, et que cette base est l'orthonormalisée de Schmidt de la base canonique $(1, X, \dots, X^n)$.

Exercice 11 – Trouver une base orthonormale de F_i^{\perp} dans les cas suivants :

1.
$$F_1 = \mathbb{R} \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$

4.
$$F_4 = \text{Vect} \left(\begin{pmatrix} 1 \\ 1 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 2 \\ 0 \\ 1 \\ 0 \end{pmatrix} \right)$$

2.
$$F_2 = \operatorname{Vect} \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}, \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix}$$
3. $F_4 = \operatorname{Vect} \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$
5. F_5 plan d'équation $x - 2y + z = 0$ dans \mathbb{R}^3
6. F_6 sev d'équations $x - y - 2z + t = 0$ et $2x$

5.
$$F_5$$
 plan d'équation $x - 2y + z = 0$ dans \mathbb{R}^3

2

3.
$$F_3 = \text{Vect} \left(\begin{pmatrix} 1 \\ 3 \\ 2 \\ 1 \end{pmatrix} \right) \text{ dans } \mathbb{R}^4$$

3.
$$F_3 = \operatorname{Vect}\begin{pmatrix} 1\\3\\2\\1 \end{pmatrix} \operatorname{dans} \mathbb{R}^4$$
5. F_5 plan d equation $x - 2y + z = 0$ dans \mathbb{R}^4
6. F_6 sev d'équations $x - y - 2z + t = 0$ et $2x - z + 3t = 0$ dans \mathbb{R}^4
7. $F_7 = \operatorname{Vect}(X, X^2)$ dans $\mathbb{R}_3[X]$ muni du ps $(P, Q) \mapsto \int_0^1 P(t)Q(t) dt$.

Exercice 12 – Déterminer la matrice dans la base canonique de la projection orthogonale sur F_i

1.
$$F_1 = \mathbb{R} \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$

3.
$$F_3 = \mathbb{R} \begin{pmatrix} 1 \\ 1 \\ 2 \\ 1 \end{pmatrix}$$

5.
$$F_5 = \operatorname{Vect}\left(\begin{pmatrix} 1\\1\\0\\1 \end{pmatrix}, \begin{pmatrix} 1\\0\\2\\1 \end{pmatrix}, \begin{pmatrix} 0\\1\\0\\1 \end{pmatrix}\right)$$

$$2. \ F_2 = \mathbb{R} \begin{pmatrix} 3 \\ 1 \\ 2 \end{pmatrix}$$

4.
$$F_4 = \operatorname{Vect}\left(\begin{pmatrix} 1\\2\\1 \end{pmatrix}, \begin{pmatrix} 1\\1\\0 \end{pmatrix}\right)$$

4.
$$F_4 = \operatorname{Vect}\left(\begin{pmatrix} 1\\2\\1 \end{pmatrix}, \begin{pmatrix} 1\\1\\0 \end{pmatrix}\right)$$
 6. $F_6 = \operatorname{Vect}\left(\begin{pmatrix} 1\\0\\2\\1 \end{pmatrix}, \begin{pmatrix} 2\\1\\0\\1 \end{pmatrix}\right)$

- 7. F_7 hyperplan d'équation 2x y z + 2t = 0 dans \mathbb{R}^4
- 8. F_8 sev d'équations x-2y-t-u=0 et 2x-z+t=0 dans \mathbb{R}^5 .
- 9. $F_9 = \operatorname{Vect}(X 1) \operatorname{dans} \mathbb{R}_2[X] \operatorname{muni} \operatorname{du} \operatorname{ps} (P, Q) \mapsto \int_0^1 P(t)Q(t) \, \mathrm{d}t.$
- 10. $F_{10} = \operatorname{Vect}(X, X^2)$ dans $\mathbb{R}_2[X]$ muni du ps $(P, Q) \mapsto \int_0^1 P(t)Q(t) dt$.

Exercice 13 – Soit E un espace euclidien, et \mathcal{B} une base quelconque de E. Montrer qu'il existe une matrice P inversible telle que la matrice du produit scalaire dans la base \mathcal{B} soit égale à ${}^tP \cdot P$. En déduire que la matrice d'un produit scalaire dans une base quelconque est toujours inversible.

Exercice 14 -

Soit E l'ensemble des suites réelles définies sur \mathbb{N} . On note ℓ^2 l'ensemble des suites réelles $u=(u_n)_{n\in\mathbb{N}}$ telles que la série de terme général u_n^2 , $n\in\mathbb{N}$ converge.

On rappelle (voir feuille 3) que le produit terme à terme de deux suites de ℓ^2 est encore dans ℓ^2 , que ℓ^2 est un espace vectoriel sur \mathbb{R} , et que l'on définit un produit scalaire sur ℓ^2 par :

$$\forall (u,v) \in \ell^2, \quad \langle u,v \rangle = \sum_{n=0}^{+\infty} u_n v_n.$$

Soit F l'ensemble des suites de E nulles à partir d'un certain rang.

- 1. Démontrer que F est un sous-espace vectoriel de ℓ^2 .
- 2. Pour tout entier naturel i, on désigne par e_i la suite de E dont tous les termes sont égaux à 0 sauf le terme d'indice i qui est égal à 1. Vérifier que pour tout $i \in \mathbb{N}$, e_i appartient à F et en déduire que F n'est pas de dimension finie.
- 3. Démontrer que toute suite appartenant à F est combinaison linéaire d'un nombre fini de suites de la famille $(e_i)_{i\in\mathbb{N}}$.
- 4. Déterminer l'orthogonal F^{\perp} de F dans ℓ^2 et vérifier que $F \oplus F^{\perp}$ est distinct de ℓ^2 . Déterminer $(F^{\perp})^{\perp}$.

Exercice 15 – Soit E l'ensemble des fonctions f continues sur $[0, +\infty[$, et telles que $\int_0^{+\infty} f(t)^2 dt$ converge absolument.

- 1. Montrer que si f et g sont dans E, alors $\int_0^{+\infty} f(t)g(t) dt$ converge absolument. Indication : on pourra utiliser l'inégalité de Cauchy-Schwarz sur [0, A], et faire tendre A vers $+\infty$.
- 2. En déduire que E est un espace vectoriel, et que $(f,g) \mapsto \int_0^{+\infty} f(t)g(t) dt$ définit un produit scalaire sur E.
- 3. Soit pour tout $k \in \mathbb{N}^*$, $f_k : t \mapsto e^{-kt}$, définie sur \mathbb{R}_+ . Montrer que pour tout $k \in \mathbb{N}^*$, f_k est élément de E.
- 4. Déterminer une base orthonormale de $Vect(f_1, f_2, f_3)$

Exercice 16 – On rappelle que $(A, B) \mapsto \langle A, B \rangle = \text{Tr}({}^t A B)$ définit un produit scalaire sur $\mathcal{M}_n(\mathbb{R})$. Déterminer une base orthonormale, pour ce produit scalaire, de l'espace engendré par la famille (M_1, M_2, M_3) définie par :

$$M_1 = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 2 & -2 \\ 0 & 2 & 2 \end{pmatrix}, \quad M_2 = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 1 & 1 \\ 0 & 0 & 3 \end{pmatrix}, \quad M_3 = \begin{pmatrix} 0 & 1 & 1 \\ 2 & 2 & 0 \\ -2 & -1 & 1 \end{pmatrix}.$$

On pourra à cet effet expliciter $\langle A, B \rangle$ à l'aide des coefficients de A et de B.

Exercice 17 - (Polynômes de Tchebychev)

- 1. Soit $P \in \mathbb{R}[X]$. Montrer que l'intégrale $\int_{-1}^{1} \frac{P(t)}{\sqrt{1-t^2}} dt$ converge.
- 2. Soit $n \in \mathbb{N}^*$. On pose, pour tout $(P,Q) \in \mathbb{R}_n[X]^2 : \langle P,Q \rangle = \int_{-1}^1 \frac{P(t)}{\sqrt{1-t^2}} dt$. Montrer que cette application est un produit scalaire sur $\mathbb{R}_n[X]$.
- 3. On définit la suite de polynômes $(T_k)_{k\in\mathbb{N}}$ par :

$$\begin{cases} T_0 = 1 \\ T_1 = X \\ \forall k \in \mathbb{N}, \quad T_{k+2} = 2XT_{k+1} - T_k. \end{cases}$$

Montrer que pour tout $k \in \mathbb{N}$, tout $x \in \mathbb{R}$, $T_k(\cos x) = \cos(kx)$

- 4. Montrer que la famille (T_0, T_1, \dots, T_n) est une famille orthogonale de $\mathbb{R}_n[X]$.
- 5. Calculer $||T_k||$ pour tout $k \in [0, n]$.

Exercice 18 - (Polynômes de Jacobi)

Soit $n \in \mathbb{N}$. Soit $E = \mathbb{R}_n[X]$. Pour tout P, Q de E, on pose $\langle P, Q \rangle = \int_{-1}^1 P(t)Q(t)\sqrt{\frac{1-t}{1+t}} \, dt$.

- 1. (a) Justifier la convergence de l'intégrale ci-dessus.
 - (b) Montrer que $(P,Q) \mapsto \langle P,Q \rangle$ est un produit scalaire sur E.
- 2. Soit φ définie sur E par $\varphi(P) = (X^2 1)P'' + (2X + 1)P'$. Montrer que φ est un endomorphisme symétrique de E.
- 3. Déterminer les valeurs propres de φ , notées $\lambda_0, \lambda_1, \dots, \lambda_n$, ordonnées par ordre croissant. Soit P_k un vecteur propre associé à λ_k ; déterminer le degré de P_k Montrer que les sous-espaces propres sont deux à deux orthogonaux.
- 4. Soit $k \ge 1$. Montrer que P_k possède au moins une racine d'ordre impair dans]-1,1[.

Soit $\alpha_1, \ldots, \alpha_r$ les racines d'ordre impair de P_k sur]-1,1[et $S=\prod_{i=1}^r (X-\alpha_i)$.

Du calcul de $\langle S, P_k \rangle$, déduire que P_k possède k racines simples toutes dans]-1,1[.

Exercice 19 -

Soit $\lambda \in \mathbb{R}$ et soit M_{λ} la matrice de $\mathcal{M}_3(\mathbb{R})$ égale à $\begin{pmatrix} 2 & \lambda & 1 \\ \lambda & 3 & \lambda \\ 1 & \lambda & 2 \end{pmatrix}$. On assimile les vecteurs de \mathbb{R}^3 à des vecteurs colonnes, et on note Φ_{λ} l'application de $\mathbb{R}^3 \times \mathbb{R}^3$ définie par : $\Phi_{\lambda}(X,Y) = {}^t X M_{\lambda} Y$.

- 1. Montrer que Φ_{λ} est une forme bilinéaire.
- 2. Écrire, pour $X \in \mathbb{R}^3$, le réel $\Phi_{\lambda}(X,X)$ comme combinaison linéaire de 3 carrés.
- 3. En déduire que Φ_{λ} est un produit scalaire si et seulement si $\lambda \in]-\frac{3}{\sqrt{2}},\frac{3}{\sqrt{2}}[.$

Soit λ une valeur telle que Φ_{λ} soit un produit scalaire. On note $\|-\|$ la norme euclidienne associée à ce produit scalaire.

- 4. Déterminer $||e_1||$, $||e_2||$ et $||e_3||$.
- 5. Déterminer une base orthonormale (b_1, b_2, b_3) de \mathbb{R}^3 , au sens du produit scalaire Φ_{λ} , en orthonormalisant la base canonique (e_1, e_2, e_3) de \mathbb{R}^3 par le procédé de Schmidt.
- 6. Déterminer le projeté orthogonal (au sens de Φ_{λ}) de e_3 sur $\text{Vect}(e_1, e_2)$.
- 7. En déduire la matrice dans la base canonique de la projection orthogonale (au sens de Φ_{λ}) sur Vect (e_1, e_2) .

Exercice 20 – (EDHEC 2003)

Pour toute matrice A de $\mathcal{M}_3(\mathbb{R})$, on note tA la matrice transposée de A, et $\operatorname{tr}(A)$ la trace de A, c'est-à-dire la somme des éléments diagonaux de A. On note I la matrice unité de $\mathcal{M}_3(\mathbb{R})$ et on considère la matrice J, élément de $\mathcal{M}_3(\mathbb{R})$ définie par :

$$J = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}.$$

À tout couple (A, B) de $\mathcal{M}_3(\mathbb{R}) \times \mathcal{M}_3(\mathbb{R})$, on associe le réel $\langle A, B \rangle = \operatorname{tr}({}^tAB)$.

1. Montrer que l'on définit ainsi un produit scalaire sur $\mathcal{M}_3(\mathbb{R})$.

Dans toute la suite, on se place dans l'espace euclidien $\mathcal{M}_3(\mathbb{R})$ muni de ce produit scalaire.

- 2. Montrer que (I, J, J^2) est une famille orthogonale.
- 3. On note E le sous-espace vectoriel de $\mathcal{M}_3(\mathbb{R})$ engendré par (I, J, J^2) .
 - (a) Déterminer une base orthonormale de E, notée (K_0, K_1, K_2) , telle que, pour tout $i \in \{0, 1, 2\}$, K_i soit proportionnelle à J^i (avec bien sûr $J^0 = I$).
 - (b) Soit A une matrice quelconque de $\mathcal{M}_3(\mathbb{R})$ dont le terme situé à l'intersection de la i-ème ligne et de la j-ème colonne est noté $a_{i,j}$.

Pour tout i de $\{0,1,2\}$, déterminer $\langle K_i,A\rangle$ en fonction de certains des éléments de A.

- (c) On note p la projection orthogonale sur E. Exprimer p(A) en fonction de K_0 , K_1 , K_2 et de certains éléments de
- (d) En déduire une base de $\operatorname{Ker} p$.