DM nº 4: Intégrales impropres

Exercice 1 – Comparaison par équivalences : un contre-exemple

- 1. Montrer que $\frac{\sin t}{t} \sim \frac{\sin t}{t} \left(1 + \frac{\sin t}{\ln t}\right)$
- 2. Montrer que $\int_{\pi}^{+\infty} \frac{\sin x}{x} dx$ converge.
- 3. (a) Montrer que $t\mapsto \frac{1}{t\ln t}$ est décroissante sur $[\pi,+\infty[$.
 - (b) En déduire que pour tout $n \in \mathbb{N}^*$, $\int_{n\pi}^{(n+1)\pi} \frac{\sin^2 t}{t \ln t} dt \geqslant \frac{1}{2} \cdot \frac{1}{(n+1)\ln((n+1)\pi)}$.
 - (c) En déduire que $\int_{\pi}^{+\infty} \frac{\sin^2 t}{t \ln t} dt$ diverge, puis que $\int_{\pi}^{+\infty} \frac{\sin t}{t} \left(1 + \frac{\sin t}{\ln t}\right) dt$ diverge.
- 4. Conclure.

Exercice 2 – Limite sous le signe somme : un contre-exemple

Soit f une application de \mathbb{R}^+ dans \mathbb{R} , continue et bornée

- 1. Justifier l'existence, pour tout $n \in \mathbb{N}$, de $\int_0^{+\infty} \frac{nf(x)}{1 + n^2x^2} dx$.
- 2. Justifier, pour tout $n \in \mathbb{N}^*$, l'égalité : $\int_0^{+\infty} \frac{nf(x)}{1 + n^2 x^2} \, \mathrm{d}x = \int_0^{+\infty} \frac{f\left(\frac{t}{n}\right)}{1 + t^2} \, \mathrm{d}t.$
- 3. Montrer que $\lim_{n \to +\infty} \int_0^{+\infty} \frac{nf(x)}{1 + n^2 x^2} dx = \frac{\pi}{2} f(0)$.
- 4. Déterminer, pour tout $x \in \mathbb{R}_+^*$, $g(x) = \lim_{n \to +\infty} \frac{nf(x)}{1 + n^2x^2}$
- 5. Justifier que $\int_0^{+\infty} g(x)$ converge et donner sa valeur.
- 6. A-t-on $\lim_{n \to +\infty} \int_0^{+\infty} \frac{nf(x)}{1 + n^2 x^2} dx = \int_0^{+\infty} \lim_{n \to +\infty} \frac{nf(x)}{1 + n^2 x^2} dx$?

Exercice 3 – (Intégrale de Gauss)

L'objet de cet exercice est de démontrer que $\int_0^{+\infty} \mathrm{e}^{-t^2} \; \mathrm{d}t = \frac{\sqrt{\pi}}{2}$

- 1. Pour tout $t \in [0,1]$, on note f_t la fonction définie sur \mathbb{R}_+ par $f_t(x) = e^{-x^2(t^2+1)}$. Calculer f'_t et f''_t , et montrer que : $\forall x \geqslant 0, \ \forall t \in [0,1], \ |f''_t(x)| \leqslant 4(4x^2+1)e^{-x^2} \leqslant 16 \cdot e^{-\frac{3}{4}}$.
- 2. Soit g la fonction définie sur \mathbb{R}_+ par : $g(x) = \int_0^1 \frac{1}{1+t^2} e^{-x^2(t^2+1)} dt$. En utilisant une formule de Taylor pour la fonction f_t , montrer que pour tout x,

$$\left| \frac{g(x+u) - g(x)}{u} - \int_0^1 \frac{1}{1+t^2} f_t'(x) \, dt \right|$$

tend vers 0 lorsque u tend vers 0.

Qu'en déduit-on sur la dérivabilité de g?

- 3. On définit la fonction h sur \mathbb{R}_+ par : $h(x) = \left(\int_0^x \mathrm{e}^{-t^2} \ \mathrm{d}t\right)^2$.
 - (a) Montrer que h est dérivable sur \mathbb{R}_+ et que pour tout $x \ge 0$, h'(x) + g'(x) = 0.
 - (b) En déduire la valeur de h(x) + g(x).
- 4. Calculer la limite de g(x) lorsque x tend vers $+\infty$. En déduire que $\int_0^{+\infty} e^{-t^2} dt = \frac{\sqrt{\pi}}{2}$.

Exercice 4 – Pour tout réels x et y, on pose

$$B(x,y) = \int_0^1 t^{x-1} (1-t)^{y-1} dt.$$

- 1. (a) Déterminer le domaine de définition de B.
 - (b) Justifier que pour tout $(x,y) \in (\mathbb{R}_+^*)^2$, B(x,y) = B(y,x).
 - (c) Déterminer une relation entre B(x+1,y) et B(x,y+1). En déduire que

$$B(x+1,y) = \frac{x}{x+y}B(x,y).$$

- (d) Calculer B(n+1,y) pour tout $n \in \mathbb{N}$ et tout y > 0.
- 2. Soit $n \in \mathbb{N}^*$.
 - (a) Montrer que, pour tout $t \ge 0$, on a $1 t \le e^{-t}$. En déduire que pour tout $t \in [0, n]$, on a :

$$\left(1 - \frac{t}{n}\right)^n \leqslant e^{-t}.$$

(b) Montrer que pour tout $t \in [0, n]$, on a :

$$\left(1 - \frac{t^2}{n}\right) e^{-t} \leqslant \left(1 - \frac{t}{n}\right)^n.$$

On distinguera les cas $t \in [0, \sqrt{n}]$ et $t \in [\sqrt{n}, n]$, ou alors, on appliquera à deux reprises l'inégalité de Taylor-Lagrange, ou encore, on étudiera la convexité de $x \mapsto (1-x)^n$.

(c) Des questions a et b, déduire un encadrement de $\int_0^n \left(1 - \frac{t}{n}\right)^n t^{x-1} dt$, pour x > 0. Conclure que :

$$\lim_{n \to +\infty} \int_0^n \left(1 - \frac{t}{n}\right)^n t^{x-1} dt = \Gamma(x).$$

(d) Exprimer $\int_0^n \left(1 - \frac{t}{n}\right)^n t^{x-1} dt$ en fonction de B(n+1,x). En déduire que

$$\Gamma(x) = \lim_{n \to +\infty} \frac{n^x n!}{x(x+1)\dots(x+n)}.$$

3. (a) Montrer que quand l'entier n tend vers $+\infty$, on a

$$B(n+1,y) \underset{+\infty}{\sim} \frac{\Gamma(y)}{n^y}$$

- (b) En déduire que $B(x,y) \underset{+\infty}{\sim} \frac{\Gamma(y)}{x^y}$.
- (c) Montrer que, pour tous réels x et y strictement positifs,

$$B(x,y) = \frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)}.$$

On pourra utiliser le résultat de la question 2 pour montrer que

$$\frac{\Gamma(x+y)}{\Gamma(x)} = \lim_{n \to +\infty} \frac{B(x+n,y)n^y}{B(x,y)}.$$

2