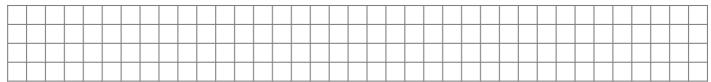
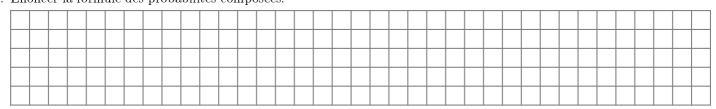

Nom:

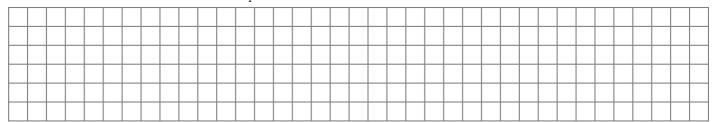
Prénom :

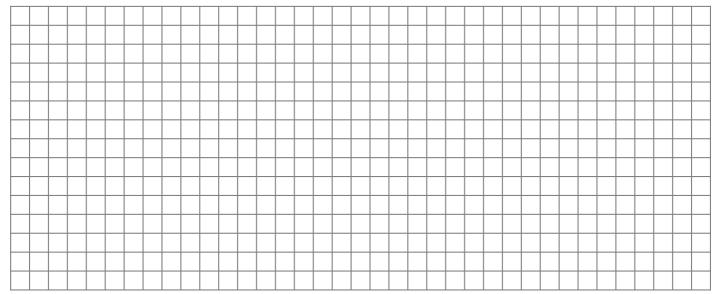

										Int	eri	og	atio	on	nº	1 -	R	évi	sio	$\mathbf{n}\mathbf{s}$	de	pro	em	ière	e ai	nné	e									
Note sur 40 :			Observations:																																	
Note sur 20 :																																				
D.																																				
Ran																																				
Anal	lyse																																			
			er l	a fo	$^{ m rm}$	ule	de	Tay	ylor	av	ec r	est	e in	tég:	ral,	en	do	nna	nt	tou	tes	les	hyj	ootl	ıès e	es.										
		-	-																															Ш		
2					1.	<u> </u>																														
2.	Th	éor T	èm∈ ⊤	e de	dé:	rıva	it10	n d	es t	onc	tioi	ıs r	s réciproques.																	_						
																																		H		
																																H		Н		
		\vdash																																Н		
3.	For	rmu	ıle d	le c	har	ıger	ner	nt d	e va	aria	bles	s da	ns	un€	in	tég:	$ral\epsilon$)																		
																																		Ш		
													/1																					Ш		
4.	Na	tur	e de	la	sér	ie d	le t	erm	ie g	éné	ral	e-\	/ In r	$^{\iota}, n$;	1.																				
																																		Ш		
																																		Н		
																																		Н		
5.	Dé	velo	opp	eme	ent	lim	ité	au	vois	sina	ge	de () à	l'or	dr€	2 0	de.	f(x)) =	$e^{\frac{1}{2+}}$	- x															
		_																																		_
		-	_			_																										H		Н		
																																H		H		
																																Н	Н	Н		
		-	-															_					_							_				Ш		
	1		1																	1	l		1							1	1	1 1				į.

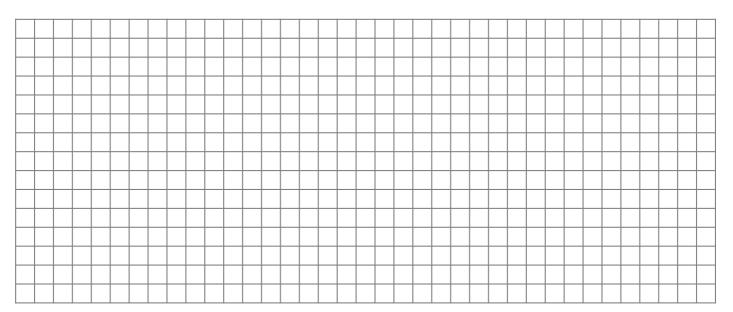
6. Calcul de $\int_0^{\frac{\pi}{4}} \frac{\mathrm{d}x}{\cos^2 x + 3\sin^2 x}$. On pourra commencer par effectuer un changement de variables $u = \tan x$.



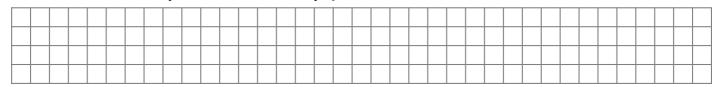
Probabilités

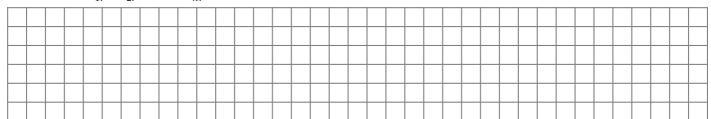

7. Définition d'une loi de Poisson de paramètre λ . Donner sans calcul son espérance et sa variance.


8. Énoncer la formule des probabilités composées.

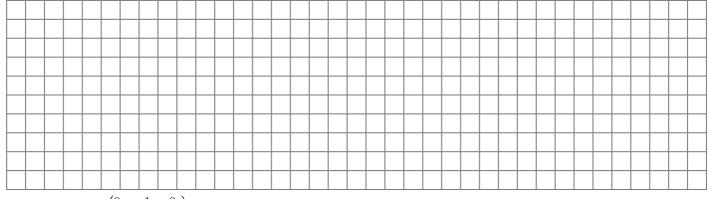


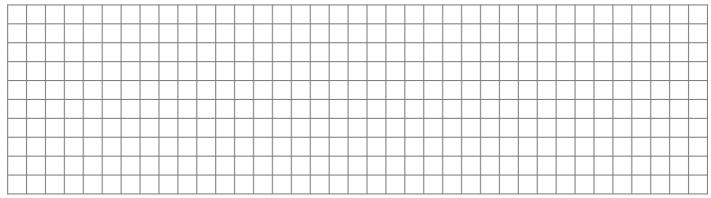
9. Définition et condition d'existence de l'espérance et de la variance.

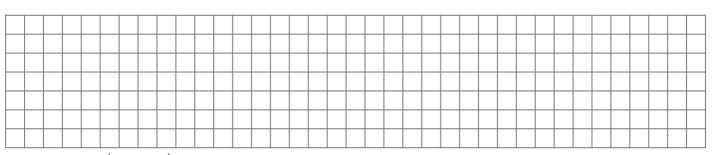

- 10. On effectue une première série de lancers d'une pièce équilibrée, et on note N le rang du premier Pile obtenu. On effectue alors une seconde série de N lancers, et on note X le nombre de Pile obtenus lors de cette série.
 - (a) Déterminer la loi, l'espérance et la variance de N.
 - (b) Déterminer les probabilités conditionnelles $P_{N=n}(X=k), n \in \mathbb{N}^*, k \in \mathbb{N}.$
 - (c) Déterminer la loi, l'espérance et la variance de X.



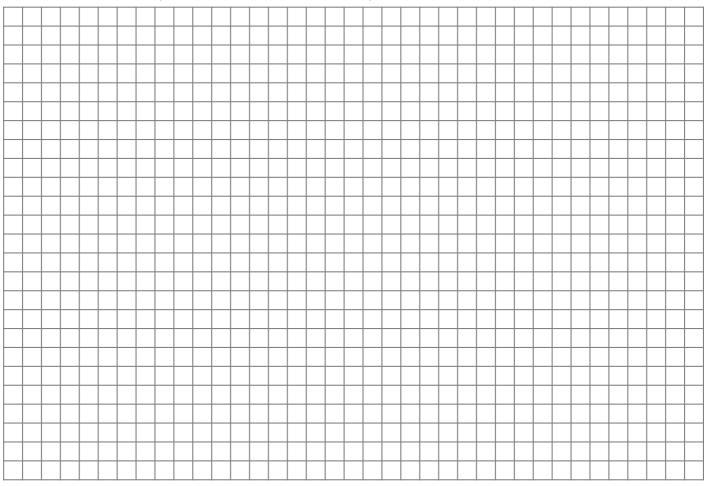
Algèbre


11. Caractérisation de la multiplicité d'une racine d'un polynôme à l'aide de la dérivation.

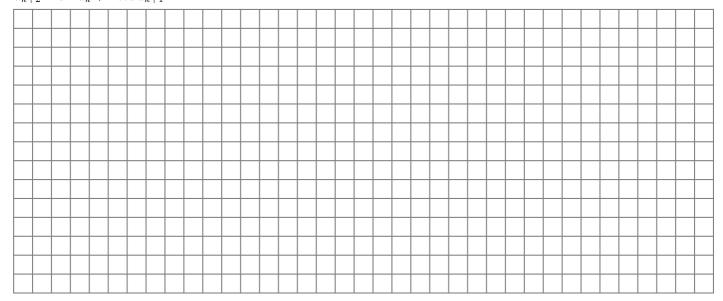

12. Soit $E_n=1+\frac{X}{1!}+\frac{X^2}{2!}+\cdots+\frac{X^n}{n!}$. Montrer que E_n n'admet pas de racine multiple dans \mathbb{C} .



13. Soit E un espace vectoriel sur \mathbb{R} , et (e_1, e_2, e_3) une famille libre de E. La famille $(e_1 + 3e_2 + 2e_3, e_2 + 2e_3, 2e_1 + 5e_2 + 2e_3)$ est-elle libre?



14. La matrice $P = \begin{pmatrix} 0 & -1 & 0 \\ 1 & 1 & 0 \\ 2 & -1 & -1 \end{pmatrix}$ est-elle inversible? Si oui, calculer son inverse.



15. La matrice $A = \begin{pmatrix} 2 & -1 & 0 \\ 1 & -1 & 1 \\ 0 & -1 & 2 \end{pmatrix}$ est-elle diagonalisable? Si oui, déterminer une matrice inversible P et une matrice diagonale D telles que $A = PDP^{-1}$ (on ne demande pas de calculer P^{-1})

Programmation

15. Écrire un programme calculant et affichant le n-ième terme de la suite définie par $u_0=0,\ u_1=2,\ {\rm pour\ tout}\ k\in\mathbb{N},$ $u_{k+2} = \sin u_k + 2\cos u_{k+1}.$

