DM nº 3: Intégrales impropres

Correction de l'exercice 1 – (exercice technique – les questions sont indépendantes)

- 1. La fonction $f: t \mapsto \frac{(\ln t)^2}{\sqrt{\mathrm{e}^t 1}}$ est continue sur $]0, +\infty[$, donc on a deux impropretés en 0 et en $+\infty$.

On a, au voisinage de $0: e^t - 1 \sim t$, donc $\sqrt{e^t - 1} \sim_0 t^{\frac{1}{2}}$.

De plus, $\ln t = o\left(\frac{1}{t^{\frac{1}{8}}}\right)$, donc $(\ln t)^2 = o\left(\frac{1}{t^{\frac{1}{4}}}\right)$. Ainsi, au voisinage de 0:

$$f(t) = o\left(\frac{1}{t^{\frac{1}{4}}t^{\frac{1}{2}}}\right) = o\left(\frac{1}{t^{\frac{3}{4}}}\right).$$

Or, $\int_{0}^{1} \frac{dt}{t^{\frac{3}{4}}}$ est convergente en tant qu'intégrale de Riemann de paramètre $\frac{3}{4}$ en 0. Les fonctions étant positives, on en déduit, d'après le théorème de comparaison par négligeabilité, que $\int_{0}^{1} f(t) dt$ converge.

• Étude en $+\infty$: Au voisinage de $+\infty$, $1 = o(e^t)$, donc $e^t - 1 \sim_{+\infty} e^t$, puis $\sqrt{e^t - 1} \sim_{+\infty} e^{t/2}$. Ainsi,

$$t^2 f(t) = t^2 (\ln t)^2 \cdot \frac{1}{\sqrt{e^t - 1}} \underset{+\infty}{\sim} t^2 (\ln t)^2 e^{-\frac{t}{2}} = o(t^4 e^{-\frac{t}{2}}),$$

et d'après les croissances comparées.

$$\lim_{t \to +\infty} t^4 e^{-\frac{t}{2}} = 0, \quad \text{donc:} \quad \lim_{t \to +\infty} t^2 f(t) = 0.$$

Par conséquent, $f(t) = o\left(\frac{1}{t^2}\right)$, et comme $\int_1^{+\infty} \frac{\mathrm{d}t}{t^2}$ converge en tant qu'intégrale de Riemann de paramètre 2 en $+\infty$, les fonctions étant positive, on obtient la convergence de $\int_{\cdot}^{+\infty} f(t) dt$.

Par conséquent, $\int_0^{+\infty} \frac{(\ln t)^2}{\sqrt{e^t - 1}} dt \text{ converge.}$

2. Posons, pour tout $x \in [2, +\infty[$, $f(x) = (\ln x)^{-\ln x}$. La fonction f est bien définie sur cet intervalle, et y est continue. Donc l'intégrale n'a qu'une impropreté en $+\infty$. De plus, pour tout $x \ge 2$,

$$0 \leqslant x^2 (\ln x)^{-\ln x} = e^{2\ln x - \ln x (\ln(\ln x))} = e^{\ln x (2 - \ln(\ln x))}$$

Or,

$$\lim_{x\to +\infty} 2 - \ln(\ln x)) = -\infty \qquad \text{et} \qquad \lim_{x\to +\infty} \ln x = +\infty \qquad \text{donc:} \qquad \lim_{x\to +\infty} \mathrm{e}^{\ln x (2 - \ln(\ln x))} = 0.$$

 $\lim_{x \to +\infty} 2 - \ln(\ln x)) = -\infty \quad \text{et} \quad \lim_{x \to +\infty} \ln x = +\infty \quad \text{donc:} \quad \lim_{x \to +\infty} e^{\ln x (2 - \ln(\ln x))} = 0.$ $\text{Ainsi, } f(x) = o\left(\frac{1}{x^2}\right), \text{ et, les fonctions étant positives,} \quad \boxed{\int_2^{+\infty} f(x) \, \mathrm{d}x \text{ converge}}, \text{ puisque } \int_2^{+\infty} \frac{\mathrm{d}x}{x^2} \text{ converge,}$ en tant que série de Riemann de paramètre 2, en la borne $+\infty$

3. Soit, pour tout $x \in [0, +\infty[$, $f(x) = \frac{1 + e^x}{1 + e^{2x}}$. La fonction f est continue sur $[0, +\infty[$, donc l'intégrale n'a qu'une impropreté, en $+\infty$. De plus,

$$x^2 f(x) \sim \frac{x^2}{e^x} \to 0,$$

donc $f(x) = o\left(\frac{1}{x^2}\right)$, et comme dans la question précédente, les fonctions étant positives, on obtient la convergence de l'intégrale.

Effectuons un changement de variable $y = e^x = \varphi(x)$, $dy = e^x dx$. La fonction φ est de classe \mathcal{C}^1 , strictement croissante, bijective de $[0, +\infty[$ sur $[1, +\infty[$. Ainsi :

$$I = \int_0^{+\infty} \frac{1 + e^x}{1 + e^{2x}} dx = \int_0^{+\infty} \frac{1 + e^x}{e^x + e^{3x}} e^x dx = \int_1^{+\infty} \frac{1 + y}{y(1 + y^2)} dy.$$

Cherchons a, b et c tels que

$$\forall y \neq 0, \quad \frac{1+y}{y(1+y^2)} = \frac{a}{y} + \frac{by+c}{y^2+1} = \frac{ay^2+a+by^2+cy}{y(y^2+1)}$$

On trouve a = 1, c = 1 et b = -1. Ainsi

$$I = \int_{1}^{+\infty} \frac{1}{y} + \frac{-y+1}{y^2+1} \, \mathrm{d}y.$$

Soit A > 1 (on est obligé, car on se retrouve avec deux intégrales sur les trois qui divergent).

$$\int_{1}^{A} \frac{1}{y} + \frac{-y+1}{y^{2}+1} dy = \left[\ln y\right]_{1}^{A} - \frac{1}{2} \left[\ln(y^{2}+1)\right]_{1}^{A} + \left[\operatorname{Arctan} y\right]_{1}^{A}$$

$$= \ln A - \frac{1}{2} \ln(A^{2}+1) + \frac{1}{2} \ln 2 + \operatorname{Arctan} A - \frac{\pi}{4}$$

$$= \frac{1}{2} \ln \frac{A^{2}}{A^{2}+1} + \operatorname{Arctan} A + \frac{\ln 2}{2} - \frac{\pi}{4}.$$

En passant à la limite lorsque A tend vers $+\infty$, on obtient :

$$I = \frac{\ln 2}{2} + \frac{\pi}{4} \ .$$

4. La fonction $f: x \mapsto \frac{\ln(1-x^2)}{x^2}$ est continue sur]0,1[, et prolongeable par continuité en 0, puisqu'elle y admet une limite égale à -1 (équivalent classique). Ainsi, il y a une seule impropreté à étudier en 1, l'autre impropreté étant une fausse impropreté.

On fait une IPP, en posant les fonctions de classe C^1 sur]0,1[suivantes :

$$\forall x \in]0,1[, u(x) = \ln(1-x^2), u'(x) = \frac{-2x}{1-x^2}, v(x) = -\frac{1}{x}, v'(x) = \frac{1}{x^2}.$$

Remarquez qu'ici, on récupère la deuxième impropreté, car la fonction v n'est pas définie en 0. On a :

$$u(x)v(x) \sim \frac{-x^2}{x} = -x,$$

donc uv admet une limite finie, égale à 0 en 0. En revanche, uv n'admet pas de limite finie en 1. On restreint donc l'intervalle d'intégration. Soit $A \in]0,1[$.

$$\int_0^A \frac{\ln(1-x^2)}{x^2} dx = \left[\frac{\ln(1-x^2)}{x}\right]_{\lim_0}^A + \int_0^A \frac{2}{1-x^2} dx = \frac{\ln(1-A^2)}{A} + \int_0^A \left(\frac{1}{1-x} + \frac{1}{1+x}\right) dx$$

$$= \frac{\ln(1-A^2)}{A} - \ln(1-A) + \ln(1+A)\frac{1}{A} \cdot (1-A)\ln(1-A) + \frac{\ln(1+A)}{A} + \ln(1+A).$$

Or, d'après les croissances comparées, $(1 - A) \ln(1 - A)$ admet une limite nulle lorsque A tend vers 1, donc l'expression précédente admet une limite lorsque A tend vers 1, donc l'intégrale converge, et

$$\int_0^1 \frac{\ln(1-x^2)}{x^2} \, \mathrm{d}x = 2 \ln 2.$$

Correction de l'exercice 2 -

• Commençons par déterminer le domaine de définition de F: une étude de continuité rapide montre que les seules impropretés sont en 0 et en $+\infty$

En 0, $\left|\frac{\cos t}{\sqrt{t}}e^{-xt}\right| \sim \frac{1}{\sqrt{t}}$, donc, les fonctions étant positives, et $\int_0^1 \frac{\mathrm{d}t}{\sqrt{t}}$ étant convergente en tant qu'intégrale de Riemann de paramètre $\frac{1}{2}$ en 0, on en déduit que l'intégrale définissant F(x) est convergente en 0, ceci quelle que soit la valeur de x.

 $\operatorname{En} + \infty$:

* Si x > 0, alors pour tout $t \ge 1$, on a :

$$\left| \frac{\cos t}{\sqrt{t}} e^{-xt} \right| \leqslant e^{-xt},$$

et $\int_{1}^{+\infty} e^{-xt} dt$ est convergente (intégrale exponentielle). Donc, d'après le théorème de comparaison par inégalités d'intégrales de fonctions positives, $\int_{1}^{+\infty} \frac{\cos t}{\sqrt{t}} e^{-xt} dt$ est absolument convergente, donc convergente.

* Si x = 0, on est ramené à l'étude de $\int_1^{+\infty} \frac{\cos t}{\sqrt{t}} dt$. Faisons une intégration par parties, en posant

$$\forall t \in [1, +\infty[, u(t) = \frac{1}{\sqrt{t}}, u'(t) = \frac{-1}{2t\sqrt{t}}, v(t) = \sin t, v'(t) = \cos t.$$

Les fonctions u et v sont de classe \mathcal{C}^1 sur $[1, +\infty[$, et $\lim_{t \to +\infty} u(t)v(t) = 0$. Ainsi, d'après le théorème d'intégration par parties, l'intégrale $\int_1^{+\infty} \frac{\cos t}{\sqrt{t}} \, \mathrm{d}t$ est de même nature que l'intégrale $\int_1^{+\infty} \frac{\sin t}{t\sqrt{t}} \, \mathrm{d}t$. Or, pour tout $t \geqslant 1$,

$$\left|\frac{\sin t}{t\sqrt{t}}\right| \leqslant \frac{1}{t^{\frac{3}{2}}},$$

donc, par comparaison à une intégrale de Riemann, les fonctions étant positives, on obtient la convergence absolue, donc la convergence de $\int_1^{+\infty} \frac{\sin t}{t\sqrt{t}} \, \mathrm{d}t$, donc la convergence (mais pas absolue) de $\int_1^{+\infty} \frac{\cos t}{\sqrt{t}}$.

* Si x < 0, on a, pour tout $n \in \mathbb{N}^*$

$$\forall t \in [2n\pi - \frac{\pi}{2}, 2n\pi + \frac{\pi}{2}], \quad \frac{\cos t}{\sqrt{t}} e^{-xt} \geqslant \cos t \cdot \frac{e^{-x(2n\pi + \frac{\pi}{2})}}{\sqrt{2n\pi + \frac{\pi}{2}}},$$

le cosinus étant positif sur cet intervalle. Ainsi :

$$\int_{2n\pi-\frac{\pi}{2}}^{2n\pi+\frac{\pi}{2}} \frac{\cos t}{\sqrt{t}} \mathrm{e}^{-xt} \; \mathrm{d}t \geqslant \frac{\mathrm{e}^{-x(2n\pi+\frac{\pi}{2})}}{\sqrt{2n\pi+\frac{\pi}{2}}} \int_{2n\pi-\frac{\pi}{2}}^{2n\pi+\frac{\pi}{2}} \cos t = \frac{\mathrm{e}^{-x(2n\pi+\frac{\pi}{2})}}{\sqrt{2n\pi+\frac{\pi}{2}}} \Big[\sin t \Big]_{2n\pi-\frac{\pi}{2}}^{2n\pi+\frac{\pi}{2}} = \frac{2\mathrm{e}^{-x(2n\pi+\frac{\pi}{2})}}{\sqrt{2n\pi+\frac{\pi}{2}}}.$$

Or, d'après les croissances comparées,

$$\lim_{n \to +\infty} \frac{2e^{-x(2n\pi + \frac{\pi}{2})}}{\sqrt{2n\pi + \frac{\pi}{2}}} = +\infty,$$

puisque x < 0, et donc

$$\lim_{n \to +\infty} \int_{2n\pi - \frac{\pi}{2}}^{2n\pi + \frac{\pi}{2}} \frac{\cos t}{\sqrt{t}} e^{-xt} dt = +\infty.$$

Si l'intégrale était convergente cette limite devrait être nulle (différence de deux intégrales partielles dont les bornes supérieures tendent vers $+\infty$, donc les deux intégrales partielles aurait même limite en cas de convergence)

Ainsi, si
$$x < 0$$
, $\int_{1}^{+\infty} \frac{\cos t}{\sqrt{t}} e^{-xt} dt$ diverge.

Par conséquent, $D_F = [0, +\infty[$

La fonction F n'est en fait pas dérivable en 0 (nous ne le démontrerons pas), nous nous contentons donc d'obtenir sa dérivabilité sur $]0, +\infty[$.

Soit t>0 fixé, et $f_t: x\mapsto \frac{\cos t}{\sqrt{t}}\mathrm{e}^{-tx}$ sur \mathbb{R}_+ . La fonction f_t est de classe \mathcal{C}^2 sur \mathbb{R}_+ , et

$$\forall t \in \mathbb{R}_+, \quad f'_t(x) = -t \cdot \frac{\cos t}{\sqrt{t}} = -\sqrt{t} \cos t e^{-tx} \qquad \text{et} \qquad f''_t(x) = t\sqrt{t} \cos t e^{-tx}.$$

Soit $x \in]0, +\infty[$, et $h \in \mathbb{R}^*$ tel que $|h| < \frac{x}{2}$. Alors, pour tout $y \in [x - |h|, x + |h|]$, on a $\frac{x}{2} \le y \le \frac{3x}{2}$. Ainsi,

$$\forall y \in [x - |h|, x + |h|], |f_t''(y)| \le t\sqrt{t}|\cos t|e^{-\frac{xt}{2}}.$$

Par conséquent, en appliquant l'inégalité de Taylor à l'ordre 1 à la fonction f_t entre x et x+h, f_t étant de classe C^2 entre ces deux valeurs, et $|f_t''|$ étant majorée par $t\sqrt{t}|\cos t|\mathrm{e}^{-\frac{xt}{2}}$ entre ces deux valeurs, on obtient :

$$|f_t(x+h) - f_t(x) - hf'_t(x)| \le \frac{h^2}{2} t\sqrt{t} |\cos t| e^{-\frac{xt}{2}}.$$

Cette inégalité est vraie pour tout t>0. Or, $t\mapsto t\sqrt{t}|\cos t|\mathrm{e}^{-\frac{xt}{2}}$ est continue sur $]0,+\infty[$, prolongeable par continuité en 0. Donc l'intégrale $\int_0^{+\infty}t\sqrt{t}|\cos t|\mathrm{e}^{-\frac{xt}{2}}\,\mathrm{d}t$ est faussement impropre (donc convergente) en 0, et impropre en $+\infty$. Mais, puisque $\frac{x}{2}>0$, d'après les croissances comparées,

$$\mathrm{e}^{-\frac{xt}{2}} = o\left(\frac{1}{x^{\frac{5}{2}}}\right) \qquad \mathrm{donc:} \qquad t\sqrt{t}|\cos t|\mathrm{e}^{-\frac{xt}{2}} = o\left(\frac{1}{x^2}\right).$$

L'intégrale $\int_1^{+\infty} \frac{\mathrm{d}x}{x^2}$ étant convergente en tant qu'intégrale de Riemann de paramètre 2 > 1 en $+\infty$, d'après le théorème de comparaison par négligeabilité d'intégrales de fonctions positives, l'intégrale $\int_0^{+\infty} t\sqrt{t} |\cos t| \mathrm{e}^{-\frac{xt}{2}} \, \mathrm{d}t$ est convergente. Notons I(x) sa valeur.

D'après le théorème de comparaison par inégalité d'intégrales de fonctions positives, on en déduit que $\int_0^{+\infty} |f_t(x+h) - f_t(x) - hf'_t(x)| dt$ est aussi convergente, et que :

$$\int_{0}^{+\infty} |f_t(x+h) - f_t(x) - hf'_t(x)| \, \mathrm{d}t \leqslant \frac{h^2}{2} I(x).$$

Puisque $\int_0^{+\infty} |f_t(x+h) - f_t(x) - hf_t'| dt$ converge, $\left| \int_0^{+\infty} f_t(x+h) - f_t(x) - hf_t'| dt \right|$ converge absolument, et d'après l'inégalité triangulaire,

$$\left| \int_0^{+\infty} f_t(x+h) - f_t(x) - hf_t'(x) \, dt \right| \leqslant \int_0^{+\infty} |f_t(x+h) - f_t(x) - hf_t'(x)| \, dt \leqslant \frac{h^2}{2} I(x).$$

En utilisant la linéarité de l'intégrale (2 des trois termes étant convergeants, donc le troisième aussi), et en divisant par |h| > 0, il vient alors :

$$\left| \frac{F(x+h) - F(x)}{h} - \int_0^{+\infty} t \cos t e^{-xt} dt \right| \leqslant \frac{|h|}{2} I(x).$$

Puisque I(x) ne dépend pas de h, $\lim_{h\to 0} \frac{|h|}{2} I(x) = 0$, donc, d'après le théorème d'encadrement :

$$\lim_{h \to 0} \frac{F(x+h) - F(x)}{h} = \int_0^{+\infty} t \cos t e^{-xt} dt.$$

Par conséquent, \overline{F} est dérivable en tout $x \in \mathbb{R}_+^*$, et :

$$\forall x \in \mathbb{R}_+^*, \quad F'(x) = \int_0^{+\infty} t \cos t e^{-xt} dt.$$

Correction du problème – (d'après EM Lyon 2004)

Partie I – Étude de la fonction $x \mapsto \int_0^{+\infty} \frac{\sin t}{t+x} dt$.

1. (a) Pour tout $x \in]0,+\infty[$, la fonction $u \mapsto \frac{\sin u}{u}$ est définie et continue sur [1,x] (ou [x,1], si $x \leqslant 1$), donc intégrable sur cet intervalle fermé. Ainsi, l'intégrale définiesant F(x) n'est pas impropre. Donc F est bien définie, pour tout $x \in]0,+\infty[$. On effectue sur cette intégrale une intégration par parties, les fonctions $u \mapsto -\cos u$ et $u \mapsto \frac{1}{u}$ étant de classe \mathcal{C}^1 sur [1,x] (ou [x,1]):

$$F(x) = \int_{1}^{x} \frac{\sin u}{u} \, du = \left[-\frac{\cos u}{u} \right]_{1}^{x} - \int_{1}^{x} \frac{\cos u}{u^{2}} \, du = \left[\cos 1 - \frac{\cos x}{x} - \int_{1}^{x} \frac{\cos u}{u^{2}} \, du = F(x) \right]_{1}^{x}$$

Lorsque x tend vers $+\infty$, puisque cos est bornée, $\frac{\cos x}{x}$ tend vers 0. De plus,

$$\forall u \in [1, +\infty[, \left| \frac{\cos u}{u^2} \right| \le \frac{1}{u^2},$$

et l'intégrale $\int_1^{+\infty} \frac{\mathrm{d}u}{u^2}$ converge en tant qu'intégrale de Riemann de paramètre 2 > 1 en $+\infty$. Ainsi, d'après le théorème de comparaison par inégalités, les fonctions comparées étant positives, $\int_1^{+infty} \left| \frac{\cos u}{u^2} \right| \, \mathrm{d}u$ converge, donc $\int_1^{+\infty} \frac{\cos u}{u^2} \, \mathrm{d}u$ converge absolument. On en déduit que $x \mapsto \int_1^x \frac{\cos u}{u^2} \, \mathrm{d}u$ admet une limite finie lorsque x tend vers $+\infty$.

Ainsi, F admet une limite finie α en $+\infty$

(b) De la même manière, G est bien définie sur $]0,+\infty[$, et une intégration par parties avec les fonctions de classe C^1 $u\mapsto \sin u$ et $u\mapsto \frac{1}{u}$ amène :

$$G(x) = \frac{\sin x}{x} - \sin 1 + \int_1^x \frac{\sin u}{u^2} du.$$

Le même argument de majoration que dans la question précédente permet de montrer que $int_1^{+\infty}\frac{\sin u}{u^2}$ du converge, donc que $x\mapsto int_1^x\frac{\sin u}{u^2}$ du admet une limite finie en $+\infty$. Comme $\lim_{x\to +\infty}\frac{\sin x}{x}=0$, on en déduit que G admet une limite finie β en $+\infty$.

(c) L'existence des limites en $+\infty$ de F et G assurent, par définition, la convergence des intégrales $\int_{1}^{+\infty} \frac{\sin u}{u} du$ et $\int_{1}^{+\infty} \frac{\cos u}{u} du$.

Par ailleurs, pour tout x>0, les fonctions $u\mapsto \frac{\sin u}{u}$ et $u\mapsto \frac{\cos u}{u}$ sont continues sur $[x,+\infty[$. Ainsi, les intégrales $\int_x^{+\infty} \frac{\sin u}{u} \, du$ et $\int_x^{+\infty} \frac{\cos u}{u} \, du$ ne sont impropres qu'en $+\infty$, et la convergence des intégrales $\int_1^{+\infty} \frac{\sin u}{u} \, du$ et $\int_1^{+\infty} \frac{\cos u}{u} \, du$ assurent leur convergence.

$$\int_{1}^{+\infty} \frac{\sin u}{u} \, du \text{ et } \int_{1}^{+\infty} \frac{\cos u}{u} \, du \text{ assurent leur convergence.}$$
Ainsi,
$$\int_{x}^{+\infty} \frac{\sin u}{u} \, du \text{ et } \int_{x}^{+\infty} \frac{\cos u}{u} \, du \text{ convergent.}$$

De plus, d'après la relation de Chasles, pour tout $x\in]0,+\infty[$:

$$\int_{x}^{+\infty} \frac{\sin u}{u} du = \int_{1}^{+\infty} \frac{\sin u}{u} du - \int_{1}^{x} \frac{\sin u}{u} du = \boxed{\alpha - F(x) = \int_{x}^{+\infty} \frac{\sin u}{u} du}.$$

Le même argument, montre que $\int_x^{+\infty} \frac{\cos u}{u} du = \beta - G(x).$

2. (a) Soit T > 0 et x > 0. La fonction $t \mapsto \frac{\sin t}{t+x}$ est continue sur [0,T], car x > 0. Ainsi, l'intégrale est définie. Effectuons alors le changement de variable affine, de classe \mathcal{C}^1 , donné par u = x + t. On a donc :

$$\int_0^T \frac{\sin t}{t+x} dt = \int_x^{x+T} \frac{\sin(u-x)}{u} du = \int_x^{x+T} \frac{\sin u \cos x - \cos u \sin x}{u} du,$$

d'après les formules de trigonométrie. Par linéarité de l'intégrale, les intégrales n'étant pas impropres ici, on obtient :

$$\int_0^T \frac{\sin t}{t+x} dt = \cos x \int_x^{x+T} \frac{\sin u}{u} du - \sin x \int_x^{x+T} \frac{\cos u}{u} du.$$

(b) Soit x>0. D'après la question 1(c), les intégrales $\int_x^{+\infty} \frac{\sin u}{u} \, du$ et $\int_x^{+\infty} \frac{\cos u}{u} \, du$ convergent, donc les fonctions $T\mapsto \int_x^{x+T} \frac{\sin u}{u} \, du$ et $T\mapsto \int_x^{x+T} \frac{\cos u}{u} \, du$ admettent une limite finie lorsque T tend vers $+\infty$. Il résulte alors de la question précédente que $\int_0^T \frac{\sin t}{x+t} \, dt$ admet une limite finie lorsque T tend vers $+\infty$, donc que $\begin{bmatrix} 1 \text{intégrale} \in 0 \\ 0 \end{bmatrix} \approx \frac{\sin t}{x+t} \, dt \text{ converge}.$

De plus, en passant à la limite lorsque T tend vers $+\infty$ dans l'égalité de la question précédente, il vient :

$$\int_0^{+\infty} \frac{\sin t}{x+t} dt = \cos x \int_x^{+\infty} \frac{\sin u}{u} du - \sin x \int_x^{+\infty} \frac{\cos u}{u} du.$$

3. La fonction F est une primitive de $u \mapsto \frac{\sin u}{u}$, qui est elle-même de classe \mathcal{C}^1 sur \mathbb{R}_+^* . Donc F est de classe \mathcal{C}^2 sur \mathbb{R}_+^* . Ainsi, d'après la relation de la question 1(c), la fonction $x \mapsto \int_x^{+\infty} \frac{\sin u}{u} \, du$ est de classe \mathcal{C}^2 sur \mathbb{R}_+^* . Il en est de même de la fonction $x \mapsto \int_x^{+\infty} \frac{\cos u}{u} \, du$. Comme sin et cos sont aussi de classe \mathcal{C}^2 , A est de classe \mathcal{C}^2 sur \mathbb{R}_+^* , en tant que produits et somme de fonctions de classe \mathcal{C}^2 .

On a alors, pour tout $x \in]0, +\infty[$:

$$A(x) = \cos x (\alpha - F(x)) - \sin x (\beta - G(x)),$$

donc

$$A'(x) = -\sin x(\alpha - F(x)) - \cos xF'(x) - \cos x(\beta - G(x)) + \sin xG'(x),$$

donc

$$A'(x) = -\sin x(\alpha - F(x)) - \frac{\sin x \cos x}{x} - \cos x(\beta - \Gamma(x)) + \frac{\sin x \cos x}{x} = -\sin x(\alpha - F(x)) - \cos x(\beta - G(x)),$$

et enfin:

$$A''(x) = -\cos x(\alpha - F(x)) + \frac{\sin x}{F'(x)} + \sin x(\beta - G(x)) + \cos xG'(x),$$

et donc:

$$A''(x) = -\cos x(\alpha - F(x)) + \frac{\sin^2 + \cos^2 x}{x} + \sin x(\beta - G(x)) = -\cos x(\alpha - F(x)) + \sin x(\beta - G(x)) + \frac{1}{x}$$

On obtient bien:

$$\forall x \in]0, +\infty[, A''(x) + A(x) = \frac{1}{x}.$$

- 4. Comme F et G tendent respectivement vers α et β en $+\infty$, les expressions trouvées dans la question précédente pour A et A', et le fait que sin et cos restent bornés, assurent que $\lim_{x \to +\infty} A(x) = 0 \text{ et } \lim_{x \to +\infty} A'(x) = 0.$
- 5. (a) Pour tout $x \in]0,1]$, et tout $u \in [x,1]$, $0 \le \cos u \le 1$, donc $0 \le \frac{\cos u}{u} \le \frac{1}{u}$. Par croissance de l'intégrale, les bornes étant bien dans l'ordre croissant,

$$0 \leqslant \int_{x}^{1} \frac{\cos u}{u} \, \mathrm{d}u \leqslant \int_{x}^{1} \frac{\mathrm{d}u}{u} = \left[\ln x\right]_{x}^{1} = -\ln x.$$

On obtient bien l'encadrement $0 \leqslant \int_x^1 \frac{\cos u}{u} du \leqslant -\ln x$

(b) Ainsi, sin étant positif sur [0,1], on a, pour tout $x \in]0,1]$:

$$0 \leqslant \sin x \int_{x}^{1} \frac{\cos u}{u} \, \mathrm{d}u \leqslant -\sin x \ln x.$$

Or, $\sin x \ln x \sim x \ln x$, et d'après les croissances comparées, $\lim_{x \to 0^+} x \ln x = 0$. Ainsi, $\lim_{x \to 0^+} -\sin x \ln x = 0$. Par conséquent, d'après le théorème d'encadrement, $\sin x \int_x^1 \frac{\cos u}{u} \, du$ admet une limite lorsque x tend vers 0^+ , et

$$\lim_{x \to 0^+} \sin x \int_x^{+\infty} \frac{\cos u}{u} \, \mathrm{d}u = 0$$

(c) L'intégrale $\int_0^{+\infty} \frac{\sin u}{u} du$ n'est impropre qu'en 0 et en $+\infty$, la fonction $u \mapsto \frac{\sin u}{u}$ étant continue sur $]0, +\infty[$. La convergence en $+\infty$ provient de la question 1(c). La convergence en 0 provient du fait que $u \mapsto \frac{\sin u}{u}$ peut se prolonger par continuité en 0 (elle admet une limite finie égale à 1), donc l'intégrale est faussement impropre en 0, donc convergente.

Ainsi, l'intégrale
$$\int_0^{+\infty} \frac{\sin u}{u} du$$
 converge

D'après les questions 2(b) et 5(b), et la convergence de $\int_0^{+\infty} \frac{\sin u}{u}$, A admet une limite en 0⁺, comme produit et somme de fonctions admettant une limite, et

$$\lim_{x \to 0^+} A(x) = \cos 0 \cdot \int_0^{+\infty} \frac{\sin u}{u} \, du + \lim_{x \to 0^+} \sin x \int_x^{+\infty} \frac{\cos u}{u} \, du = \boxed{\int_0^{+\infty} \frac{\sin u}{u} \, du = \lim_{x \to 0^+} A(x)}$$

Partie II – Étude de la fonction $x \mapsto \int_0^{+\infty} \frac{e^{-xt}}{1+t^2} dt$

1. Soit $x \in]0, +\infty[$, et $k \in \mathbb{N}$. Si k = 0, on a directement, pour tout $t \in \mathbb{R}_+$, $0 \leqslant e^{-xt} \leqslant 1$, donc la fonction $t \mapsto t^k e^{-xt}$ est bornée si k = 0.

Supposons que $k \in \mathbb{N}^*$. La fonction $f: t \mapsto t^k e^{-xt}$ est dérivable sur $[0, +\infty[$, et

$$\forall t \in [0, +\infty[, f'(t) = (kt^{k-1} - xt^k)e^{-xt} = t^{k-1}(k - xt)e^{-xt}.$$

On obtient donc le tableau de variations suivant :

arrano sarvano.				
	x	0	$\frac{k}{x}$	$+\infty$
	f'(x)	+	0	_
	f(x)	0	$f\left(\frac{k}{x}\right)$	

Ainsi, pour tout $t \in \mathbb{R}_+$, $0 \leqslant f(t) \leqslant f\left(\frac{k}{x}\right)$. Donc $t \mapsto t^k e^{-xt}$ est bornée sur \mathbb{R}_+ .

La fonction $t \mapsto \frac{t^k e^{-xt}}{1+t^2}$ est continue sur $[0, +\infty[$, donc l'intégrale $\int_0^{+\infty} \frac{t^k e^{-xt}}{1+t^2} dt$ n'est impropre qu'en $+\infty$. Par ailleurs, pour tout $t \ge 1$,

$$0 \leqslant \frac{t^k e^{-xt}}{1+t^2} \leqslant \frac{M}{1+t^2} \leqslant \frac{M}{t^2}.$$

Or, l'intégrale $\int_1^{+\infty} \frac{M}{t^2} dt$ converge, car égale, à un facteur multiplicatif M près, à une intégrale de Riemann de paramètre 2 en $+\infty$. Donc, par comparaison par inégalité d'intégrales de fonctions positives, l'intégrale $\int_1^{+\infty} \frac{t^k \mathrm{e}^{-xt}}{1+t^2} dt$ converge, donc l'intégrale $\int_0^{+\infty} \frac{t^k \mathrm{e}^{-xt}}{1+t^2} dt$ converge.

2. (a) Soit $u \in \mathbb{R}$. La fonction $g: t \mapsto e^t$ est de classe C^2 sur [0, u] ou [u, 0], suivant le signe de u. De plus, puisque pour tout $t, t \leq |t|$, et par croissance de l'exponentielle, on a, pour tout t de [0, u] ou [u, 0]:

$$g''(t) = e^t \leqslant e^{|t|} \leqslant e^{|u|}$$
.

Par ailleurs, g(0) = g'(0) = 1. Ainsi, d'après l'inégalité de Taylor-Lagrange à l'ordre 1 entre 0 et u:

$$|\mathbf{e}^u - 1 - u| \leqslant \frac{u^2}{2} \mathbf{e}^{|u|}.$$

(b) Soit $x \in \mathbb{R}_+^*$, et $k \in \mathbb{N}$. Soit h tel que $0 < |h| \leqslant \frac{x}{2}$. On a alors :

$$\left| \frac{B_k(x+h) - B_k(x)}{h} + B_{k+1}(x) \right| = \left| \frac{\int_0^{+\infty} \frac{t^k e^{-(x+h)t}}{1+t^2} dt - \int_0^{+\infty} \frac{t^k e^{-xt}}{1+t^2} dt}{h} + \int_0^{+\infty} \frac{t^{k+1} e^{-xt}}{1+t^2} dt \right|$$

$$= \left| \int_0^{+\infty} \left(\frac{1}{h} \left(\frac{t^k e^{-(x+h)t}}{1+t^2} - \frac{t^k e^{-xt}}{1+t^2} \right) + \frac{t^{k+1} e^{-xt}}{1+t^2} \right) dt \right|$$

$$\leq \int_0^{+\infty} \left| \left(\frac{1}{h} \left(\frac{t^k e^{-(x+h)t}}{1+t^2} - \frac{t^k e^{-xt}}{1+t^2} \right) + \frac{t^{k+1} e^{-xt}}{1+t^2} \right) dt \right|,$$

d'après l'inégalité triangulaire. Ainsi,

$$\left| \frac{B_k(x+h) - B_k(x)}{h} + B_{k+1}(x) \right| \le \int_0^{+\infty} \frac{1}{|h|} \frac{t^k e^{-xt}}{1+t^2} \left| e^{-ht} - 1 + ht \right| dt$$

$$\le \int_0^{+\infty} \frac{1}{|h|} \frac{t^k e^{-xt}}{1+t^2} \frac{h^2 t^2}{2} e^{-ht} dt$$

$$= \frac{|h|}{2} \int_0^{+\infty} \frac{t^{k+2} e^{-xt-ht}}{1+t^2} dt,$$

la deuxième inégalité provenant de l'inégalité de la question précédente, appliquée à u = -ht, et mulipliée par une valeur positive, et de la croissance de l'intégrale.

De plus, puisque $0 < |h| \leqslant \frac{x}{2}$, on a $-x - h < -\frac{x}{2} < 0$, donc $e^{-xt-ht} \leqslant e^{-\frac{xt}{2}}$. Ainsi,

$$\left| \frac{B_k(x+h) - B_k(x)}{h} + B_{k+1}(x) \right| \le \frac{|h|}{2} \int_0^{+\infty} \frac{t^{k+2} e^{-\frac{xt}{2}}}{1+t^2} dt = \frac{|h|}{2} B_{k+2} \left(\frac{x}{2}\right).$$

Remarquez que la convergence de toutes les intégrales utilisées ici est assurée par la question II-1.

(c) Soit $k \in \mathbb{N}$ et $x \in \mathbb{R}_+^*$. La quantité $B_{k+2}\left(\frac{x}{2}\right)$ est indépendante de h, donc

$$\lim_{h \to 0} \frac{|h|}{2} B_{k+2} \left(\frac{x}{2}\right) = 0.$$

Ainsi, $\frac{B_k(x+h) - B_k(x)}{h}$ admet une limite lorsque h tend vers 0, égale à $-B_{k+1}(x)$, et donc, par définition, B_k est dérivable en x, et $B'_k(x) = -B_{k+1}(x)$.

(d) En particulier, B_0 est dérivable sur \mathbb{R}_+^* , de dérivée $B_0' = -B_1$. La fonction B_1 elle-même est dérivable sur \mathbb{R}_+^* , de dérivée $-B_2$, continue, car elle-même dérivable. Ainsi, $B_0' = -B_1$ est de classe \mathcal{C}^1 sur \mathbb{R}_+^* , donc B_0 est de classe \mathcal{C}^2 sur \mathbb{R}_+^* .

Par ailleurs, nous avons, pour tout $x \in \mathbb{R}_+^*$:

$$B_0''(x) + B_0(x) = B_2(x) + B_0(x) = \int_0^{+\infty} \frac{(t^2 + 1)e^{-xt}}{1 + t^2} dt = \int_0^{+\infty} e^{-xt} dt = \frac{1}{x} \int_0^{+\infty} xe^{-xt} = \frac{1}{x},$$

en reconnaissant la densité d'une variable aléatoire suivant une loi exponentielle de paramètre x (ou bien refaites le calcul!) Ainsi :

$$\forall x \in \mathbb{R}_{+}^{*}, \ B_{0}''(x) + B_{0}(x) = \frac{1}{x}$$

3. Par positivité de l'intégrale, on a, pour tout $k \in \mathbb{N}$, et tout $x \in \mathbb{R}_+^*$, $B_k(x) \ge 0$. Ainsi :

$$0 \leqslant B_0(x) \leqslant B_0(x) + B_2(x) = \frac{1}{x}$$

la dernière égalité provenant de la question II-2(d).

En dérivant l'égalité de la question 2(d), il vient, pour tout $x \in \mathbb{R}_+^*$,

$$B_0'(x) + B_2'(x) = -\frac{1}{x^2}$$
, donc: $B_1(x) + B_3(x) = \frac{1}{x^2}$,

et de même que plus haut, la positivité de B_3 permet d'obtenir :

$$\forall x \in \mathbb{R}_+^*, \quad \boxed{0 \leqslant B_1(x) = -B_0'(x) \leqslant \frac{1}{x^2}}$$

D'après le théorème d'encadrement, on en déduit immédiatement l'existence de limites en $+\infty$ de B_0 et B_0' , et :

$$\lim_{x \to +\infty} B_0(x) = 0 = \lim_{x \to +\infty} B'_0(x).$$

4. (a) Soit x > 0.

• Pour tout $t \in]0, \frac{1}{\sqrt{x}}[$, $xt \leq \sqrt{x}$, donc $e^{-xt} \geq e^{-\sqrt{x}}$, et, par croissance de l'intégrale, et positivité des fonctions,

$$B_0(x) = \int_0^{+\infty} \frac{e^{-xt}}{1+t^2} dt \geqslant \int_0^{\frac{1}{\sqrt{x}}} \frac{e^{-xt}}{1+t^2} dt \leqslant \int_0^{\frac{1}{\sqrt{x}}} \frac{e^{-\sqrt{x}}}{1+t^2} dt = e^{-\sqrt{x}} \int_0^{\frac{1}{\sqrt{x}}} \frac{dt}{1+t^2}.$$

• Pour tout $t \in \mathbb{R}_+$, $e^{-xt} \leq 1$, donc, par croissance de l'intégrale,

$$B_0(x) = \int_0^{+\infty} \frac{e^{-xt}}{1+t^2} dt \le \int_0^{+\infty} \frac{1}{1+t^2} dt.$$

Ainsi, les deux points précédents amènent l'encadrement

$$\forall x \in]0, +\infty[, e^{-\sqrt{x}} \int_0^{\frac{1}{\sqrt{x}}} \frac{dt}{1+t^2} \le B_0(x) \le \int_0^{+\infty} \frac{dt}{1+t^2}$$

(b) L'intégrale n'est pas impropre. On pose le changement de variable $t = \tan u$, de classe C^1 sur [0, y] ($y \in [0, \frac{\pi}{2}]$. On a $dt = (1 + \tan^2 u) du$. Ainsi

$$\int_0^y du = \int_0^y \frac{(1 + \tan^2 u) du}{1 + \tan^2 u} = \int_0^{\tan y} \frac{dt}{1 + t^2}.$$

Par conséquent,

$$\int_0^{+\infty} \frac{\mathrm{d}t}{1+t^2} = \lim_{y \to \left(\frac{\pi}{2}\right)^-} \int_0^{\tan y} \frac{\mathrm{d}t}{1+t^2} = \lim_{y \to \frac{\pi}{2}} \int_0^y \, \mathrm{d}u = \frac{\pi}{2}.$$

Ainsi,
$$\int_0^{+\infty} \frac{\mathrm{d}t}{1+t^2} = \frac{\pi}{2}$$

Pourquoi passer par là plutôt que d'utiliser l'arctangente? Je l'ignore...

(c) On a donc:

$$\forall x > 0, \ e^{-\sqrt{x}} \int_0^{\frac{1}{\sqrt{x}}} \frac{dt}{1+t^2} \le B_0(x) \le \frac{\pi}{2},$$

et de plus, $\lim_{x\to 0^+} \int_0^{\frac{1}{\sqrt{x}}} \frac{dt}{1+t^2} = \lim_{y\to +\infty} \int_0^y \frac{dt}{1+t^2} = \frac{\pi}{2}$, et $\lim_{x\to 0^+} e^{-\sqrt{x}} = 1$, donc

$$\lim_{x \to 0^+} e^{-\sqrt{x}} \int_0^{\frac{1}{\sqrt{x}}} \frac{dt}{1 + t^2} = \frac{\pi}{2}.$$

D'après le théorème d'encadrement, B_0 admet donc une limite en 0^+ , et

$$\lim_{x \to 0^+} B_0(x) = \frac{\pi}{2}$$

Partie III – Calcul de l'intégrale $\int_0^{+\infty} \frac{\sin u}{u} du$

1. La fonction φ est de classe \mathcal{C}^2 sur \mathbb{R}_+^* , en tant que différence de deux fonctions de classe \mathcal{C}^2 . Ainsi, U est dérivable sur \mathbb{R}_+^* en tant que produit et somme de fonctions dérivables, et

$$\forall x > 0, \quad U'(x) = 2\varphi'(x)\varphi(x) + 2\varphi''(x)\varphi'(x) = 2\varphi'(x)(\varphi(x) + \varphi''(x)).$$

Or, pour tout x > 0

$$\varphi(x) + \varphi''(x) = A(x) - B_0(x) + A''(x) - B_0''(x) = (A(x) + A''(x)) - (B_0(x) + B_0''(x)) = \frac{1}{x} - \frac{1}{x} = 0,$$

d'après les questions I-3 et II-2(d). Ainsi, pour tout x > 0, U'(x) = 0, donc U est constante sur $]0, +\infty[$

2. On a $\lim_{x\to +\infty} A(x) = 0$ d'après I-4, et $\lim_{x\to +\infty} B_0(x) = 0$ d'après II-3. Donc

$$\lim_{x \to +\infty} U(x) = 0$$

3. Puisque U est constante sur \mathbb{R}_+^* , sa valeur constante est égale à la valeur de sa limite, donc

$$\forall x \in]0, +\infty[, U(x) = 0 \quad \text{donc:} \quad (\varphi(x))^2 + (\varphi'(x))^2 = 0.$$

Une somme de termes positifs est nulle si et seulement si chaque terme est nul, donc

$$\forall x \in]0, +\infty[, \varphi(x) = 0$$
 soit: $A(x) - B_0(x) = 0$ soit: $A(x) = B_0(x)$.

4. En passant à la limite en 0^+ dans l'égalité précédente, il vient donc :

$$\lim_{x \to 0^+} A(x) = \lim_{x \to 0^+} B_0(x) \qquad \text{donc:} \qquad \boxed{\int_0^{+\infty} \frac{\sin u}{u} \, du = \frac{\pi}{2}},$$

d'après les questions I-5(c) et II-4(c).