Probabilité 5 – Lois continues classiques

Exercice 1 – Soit $X \hookrightarrow \mathcal{N}(0,1)$.

1. Calculer les probabilités suivantes :

$$P(X \le 1.63)$$
 $P(X < 1.63)$ $P(X \le -1.41)$ $P(X \ge -1.52)$ $P(1.536 \le X < 1.624)$.

2. Calculer les seuils x définis par : $\Phi(x) = 0.9463$ $\Phi(x) = 0.0537$ $\Phi(x) = 0.830$

Exercice 2 – Soit $X \hookrightarrow \mathcal{N}(7, 4^2)$.

- 1. Calculer les probabilités suivantes : p(X < 7) $P(X \le 12.12)$ P(X < 8.26) $P(5.25 < X \le 9.13)$.
- 2. Déterminer les seuils définis par : $P(X \le x) = 0.9162$, P(X > x) = 0.9418, P(-x + 14 < X < x) = 0.9418.

Exercice 3 – Soit $X \hookrightarrow \mathcal{N}(1,2)$. Déterminer une densité de $Y_1 = X^2$, de $Y_2 = \frac{1}{1+X^2}$, de $Y_3 = \frac{1}{1-X^2}$.

Exercice 4 – Soit $X \hookrightarrow \gamma\left(\frac{1}{2}\right)$, $Y = \sqrt{X}$ et B une variable discrète prenant uniformément ses valeurs dans $\{-1,1\}$, indépendante de X. Soit Z = BY.

- 1. Déterminer une densité de Y.
- 2. Déterminer une densité de Z (on pourra exprimer sa fonction de répartition, en considérant le système complet ([B=-1], [B=1])). Reconnaître la loi de Z et donner sans calcul son espérance et sa variance.
- 3. Donner plus généralement une densité de Z lorsque $X \hookrightarrow \Gamma(b,\nu)$, $(b,\nu) \in (\mathbb{R}_+^*)^2$. Comment choisir b et ν pour que Z suive une loi normale centrée réduite?

Exercice 5 – Soit n un entier naturel non nul. On considère $X \hookrightarrow \mathcal{E}(\lambda)$ et $Y \hookrightarrow \mathcal{B}(n, \frac{1}{2})$. On suppose que X et Y sont indépendantes.

Montrer que la variable $Z = \frac{X}{Y+1}$ est à densité. Déterminer une densité de cette variable.

Exercice 6 – On considère n variables aléatoires réelles Z_1, \ldots, Z_n indépendantes de même loi uniforme sur]0, r]. Pour tout $i \in [1, n]$, on définit $W_i = \frac{1}{Z_i}$.

- 1. Déterminer la loi de W_1 (fonction de répartition et densité).
- 2. On définit $W = \inf(W_1, \dots, W_n)$. Déterminer la loi de W (fonction de répartition et densité)
- 3. Déterminer, par le calcul, l'espérance et la variance de W.

Exercice 7 – Soient U une variable aléatoire réelle suivant la loi uniforme sur [0,1[et λ un réel strictement positif. On considère les variables aléatoires $V=-\frac{1}{\lambda}\ln(1-U), \ W=\lfloor V\rfloor, \ Y=V-\lfloor V\rfloor, \ \text{et } Z=-\frac{1}{\lambda}\ln(1-Y).$

- 1. Déterminer les lois de V et W.
- 2. Déterminer une densité de Y ainsi que son espérance.
- 3. Déterminer une densité de Z.
- 4. On considère la variable aléatoire $X = \min(1, V)$. Déterminer la fonction de répartition de X.

Exercice 8 – (Loi du khi-deux) Soit r un entier non nul. On dit qu'une variable aléatoire X suit la loi du χ^2 à r degrés de liberté si X suit la loi $\Gamma\left(2, \frac{r}{2}\right)$.

- 1. Déterminer l'espérance et la variance d'une variable X suivant la loi du χ^2 à r degrés de liberté.
- 2. (a) Montrer que pour tout $\lambda > 0$, et tout entier n non nul,

$$e^{\lambda} = \sum_{k=0}^{n-1} \frac{\lambda^k}{k!} + \int_0^{\lambda} e^{\lambda - t} \frac{t^{n-1}}{(n-1)!} dt.$$

- (b) Soient Y_{λ} une variable aléatoire suivant la loi de Poisson de paramètre λ et X_{2n} une variable aléatoire suivant la loi du χ^2 à 2n degrés de liberté. Montrer que $P(X_{2n} > 2\lambda) = P(Y_{\lambda} < n)$.
- (c) Donner l'allure de la courbe représentative de la fonction F_6 , fonction de répartition d'une variable suivant la loi du χ^2 à 6 degrés de liberté. Préciser les valeurs de $F_6(0)$, $F_6(4)$ et $F_6(8)$.
- 3. Soient k un entier naturel non nul, et X_1, \ldots, X_k des variables indépendantes gaussiennes centrées réduites.
 - (a) Déterminer la loi de X_1^2 .
 - (b) En déduire la loi de $X_1^2 + \cdots + X_k^2$.
 - (c) Tracer sur un même graphe l'allure des fonctions de répartition de deux variables aléatoires, l'une suivant la loi du χ^2 à r degrés de liberté, l'autre suivant la loi du χ_2 à r' degrés de liberté, où r et r' sont deux entiers naturels non nuls tels que r < r'.

Exercice 9 – À l'instant t = 0, un piéton se trouve au bord d'une route à sens unique, qu'il désire traverser.

On note T_1 la variable aléatoire égale au temps qui s'écoule entre le début de l'expérience et le passage de la première voiture, puis, plus généralement, pour tout $i \ge 2$, T_i la durée entre le passage de la i-1-ième voiture et de la i-ième voiture. On suppose que les T_i sont mutuellement indépendantes, et suivent une loi exponentielle de paramètre λ . Prudent, le piéton décide de ne traverser à l'instant t que si la première voiture visible est éloignée de lui d'une distance supérieure à une certaine distance de sécurité. Le temps mis pour parcourir cette distance de sécurité (les voitures étant supposées rouler toutes à la même vitesse) est noté a.

On note X la variable aléatoire égale à l'instant où le piéton va traverser la route, c'est-à-dire l'instant de passage de la première voiture qui séparée de la suivante d'au moins la distance de sécurité. On note N le nombre de voitures qui passeront avant que le piéton puisse traverser.

On pose $p = e^{-\lambda a}$ et q = 1 - p.

- 1. (a) Comparer [X=0] et $[T_1>a]$. En déduire P(X=0) et P(N=0) en fonction de p.
 - (b) Pour $n \ge 1$, déterminer $P([T_1 \le a] \cap \cdots \cap [T_n \le a] \cap [T_{n+1} > a])$ en fonction de p. En déduire la loi de N.
 - (c) Soit $n \ge 1$. Pour tout $i \in [1, n]$ et tout t > 0, comparer les probabilités conditionnelles $P(T_i \le t \mid N = n)$ et $P(T_i \le t \mid T_i \le a)$.

Déterminer $P(T_i \leq t \mid T_i \leq a)$ et en déduire une densité pour cette loi conditionnelle.

- 2. (a) Pour tout $i \in [1, n]$, déterminer l'espérance $E(T_i \mid N = n)$.
 - (b) Déterminer l'espérance conditionnelle $E(X \mid N = n)$.
 - (c) En déduire l'espérance de X en fonction de a.

Exercice 10 – Soit λ un réel strictement positif. On considère une suite de variables aléatoires mutuellement indépendantes $(X_i)_{i\in\mathbb{N}}$, suivant toutes la loi exponentielle de paramètre λ .

Soit p un réel de l'intervalle]0,1[. On pose q=1-p. Soit N une variable aléatoire suivant la loi géométrique de paramètre p.

On note
$$S = \sum_{n=1}^{N} X_n$$
.

- 1. Soit n un entier strictement positif. Déterminer une densité de $X_1 + X_2 + \cdots + X_n$.
- 2. Montrer que $P(X_1 + \dots + X_n \leqslant x) = \mathbf{1}_{\mathbb{R}_+}(x) \left(1 e^{-\lambda x} \left(\sum_{k=0}^{n-1} \frac{(\lambda x)^k}{k!} \right) \right)$.
- 3. (a) Déterminer la fonction de répartition de S.
 - (b) En déduire la loi de S et montrer que $E(S) = E(X_1)E(N)$.

Exercice 11 – Des voyageurs arrivent de façon aléatoire dans la salle des pas perdus de la gare de Lyon. On suppose que la variable N_t égale au nombre de ces voyageurs arrivant entre les instants 0 et t, t > 0, suit une loi de Poisson de paramètre αt , où $\alpha > 0$.

- 1. On note X_1 l'instant d'arrivée du premier voyageur.
 - (a) Déterminer $P(X_1 > t)$, puis reconnaître la loi de X_1 .

- (b) Donner sans calcul les valeurs de $E(X_1)$ et $V(X_1)$.
- 2. (a) Soit X_n la v.a.r. égale à l'instant d'arrivée du n-ième voyageur. Montrer que :

$$\forall t > 0, \quad F_{X_n}(t) = 1 - e^{-\alpha t} \cdot \sum_{k=0}^{n-1} \frac{(\alpha t)^k}{k!}.$$

- (b) En déduire une densité f_n de X_n . Reconnaître la loi de X_n .
- 3. En déduire $E(X_n)$ et $V(X_n)$.

Exercice 12 - (ESCP 2009)

- 1. Soit a et b deux réels strictement positifs. Etablir l'existence de l'intégrale $\int_0^1 t^{a-1} (1-t)^{b-1} dt$. On note alors J(a,b) cette intégrale.
- 2. On définit la fonction f sur \mathbb{R} , par :

$$f(x) = \begin{cases} \frac{1}{J(a,b)} x^{a-1} (1-x)^{b-1} & \text{si } x \in]0,1[\\ 0 & \text{sinon.} \end{cases}$$

Vérifier que f est une densité de probabilité.

Si X est une variable aléatoire admettant f pour densité, on dit que X suit la loi $\beta(a,b)$.

- 3. On considère une variable X suivant la loi $\beta(p,q)$, où p et q sont deux entiers naturels non nuls.
 - (a) Calculer J(p,q).
 - (b) Calculer l'espérance E(X) de la variable aléatoire X.
- 4. Pour n de \mathbb{N}^* , on considère n variables X_1, \ldots, X_n indépendantes, définies sur le même espace probabilisé (Ω, \mathcal{A}, P) , suivant toutes la loi uniforme sur [0, 1].

Pour tout $\omega \in \Omega$, on note $Y_k(\omega)$ le k-ième des nombres $X_1(\omega), \ldots, X_n(\omega)$, quand ceux-ci sont rangés dans l'ordre croissant.

On a donc par exemple:

$$Y_1(\omega) = \min(X_1(\omega), \dots, X_n(\omega))$$
 et $Y_n(\omega) = \max(X_1(\omega), \dots, X_n(\omega))$.

On admet que pour tout entier k de [1, n], Y_k est une variable aléatoire définie sur le même espace probabilisé que les variables X_1, \ldots, X_n .

On note, pour $k \in [1, n]$, F_k la fonction de répartition de Y_k .

- (a) Donner les expressions de F_1 et de F_n .
- (b) Déterminer, pour $k \in [1, n]$, la fonction de répartition de Y_k
- (c) Déterminer une densité de Y_k ; reconnaître la loi de Y_k et donner son espérance. (on remarquera que $j\binom{n}{j} = n\binom{n-1}{j-1}$ et que $(n-j)\binom{n}{j} = n\binom{n-1}{j}$).

Exercice 13 - (ESCP 2010)

Une puce se déplace dans \mathbb{R}^3 muni d'un repère $(0, e_1, e_2, e_3)$.

À l'instant 0, elle se trouver en l'origine O = (0,0,0); à tout instant $n \in \mathbb{N}^*$, elle effectue un déplacement $D_n = (D_{n_1}, D_{n_2}, D_{n_3})$.

On suppose que les trois variables aléatoires D_{n_1} , D_{n_2} et D_{n_3} sont indépendantes et suivent la même loi normale $\mathcal{N}(0,1)$. On suppose de plus que tous les différents déplacements sont indépendants.

Pour
$$i \in [1, 3]$$
, on note $S_{n,i} = \sum_{k=1}^{n} D_{k,i}$ et $S_n = (S_{n,1}, S_{n,2}, S_{n,3})$.

On étudie l'événement $A_n = [S_n \in [-1, 1]^3]$.

- 1. (a) Déterminer la loi de $S_{n,1}$.
 - (b) Exprimer la probabilité $P([|S_{n,1}| \leq 1])$ à l'aide de la fonction de répartition Φ de la loi normale centrée réduite, et en déduire un équivalent de $P([|S_{n,1}| \leq 1])$ lorsque n tend vers $+\infty$

- (c) Déterminer un équivalent de $P(A_n)$ lorsque n tend vers l'infini.
- 2. (a) Montrer que pour tout $n, m \in \mathbb{N}^*$, on a : $P\left(\bigcup_{k=n}^{n+m} A_k\right) \leqslant \sum_{k=n}^{n+m} P(A_k)$.
 - (b) En déduire $\lim_{n\to+\infty} P\left(\bigcup_{k=n}^{+\infty}\right)$.
 - (c) Déterminer $P\left(\bigcap_{n\geqslant 1}\left(\bigcup_{k\geqslant n}A_k\right)\right)$.
- 3. L'événement A_n se réalisera-t-il un nombre fini de fois ou une infinité de fois presque sûrement?

Exercice 14 – Un tireur à l'arc effectue le lancer d'une flèche sur une cible plane de centre O, origine d'un repère orthonormal. On note X et Y les coordonnées du point d'impact de la flèche sur la cible, et on suppose que X et Y sont deux variables indépendantes, de même loi normale $\mathcal{N}(0,1)$.

- 1. (a) Montrer que |X| est une variable continue, en déterminer une densité.
 - (b) Montrer que Z=|X|+|Y| est une variable continue dont une densité est la fonction g définie par : $g:x\mapsto \left\{\begin{array}{ll} 0 & \text{si }x<0\\ \frac{2}{\pi}\mathrm{e}^{-\frac{x^4}{4}}\int_{-\frac{x}{2}}^{\frac{x}{2}}\mathrm{e}^{-t^2}\;\mathrm{d}t & \text{si }x\geqslant0 \end{array}\right.$
- 2. Soit $a \in \mathbb{R}_+^*$; on considère le carré ABCD, dont les sommets sont définis par leurs coordonnées dans le repère orthonormal précédent par : A:(a,0); B:(0,a); $_xC:(-a,0)$; D:(0,-a).
 - (a) Déterminer la fonction dérivée de $K: x \mapsto \int_{-\frac{x}{2}}^{\frac{x}{2}} e^{-t^2} dt$.
 - (b) Déterminer en fonction de $\Phi\left(\frac{a\sqrt{2}}{2}\right)$ la probabilité que la flèche arrive à l'intérieur de ce carré.
 - (c) Application numérique a=1 (on donne $\frac{1}{\sqrt{2}}\simeq 0.707$).
- 3. (a) Déterminer des densités de X^2 et de Y^2 , puis de $X^2 + Y^2$.
 - (b) En déduire la probabilité que la flèche soit à distance inférieur ou égale à a du centre de la cible.

Exercice 15 – Soit $X \hookrightarrow \mathcal{N}(0,1)$, et $Y \hookrightarrow \mathcal{E}(2)$ indépendantes.

- 1. Espérance et variance de X et Y?
- 2. Déterminer une densité de $X^2 + 4Y$.
- 3. Soit P le polynôme aléatoire en la variable z donné par $P(z) = z^2 + Xz Y + \frac{1}{4}$. Quelle est la probabilité que le polynôme P ait deux racines réelles distinctes?

4

Exercice 16 – Soit $X \hookrightarrow \mathcal{N}(0, 2^2)$. Déterminer a tel que P(|X| < a) = 0.9

Exercice 17 -

- 1. Soit $X \hookrightarrow \mathcal{N}(0,1)$ et $Y \hookrightarrow \gamma(2)$ indépendantes. Déterminer une densité de X+Y
- 2. Soit $X \hookrightarrow \mathcal{N}(0,1), \, Y, Z \hookrightarrow \gamma(2),$ indépendantes. Déterminer une densité de X+Y+Z

Exercice 18 – Déterminer $I = \int_0^1 e^{-x^2 - x} dx$ (on donne : $\frac{\sqrt{2}}{2} \approx 0.71$).