

LYCÉE LOUIS-LE-GRAND, Paris MPSI 4 – Mathématiques A. TROESCH

Interrogation nº 2

Correction de l'exercice - (20 minutes, 20 questions, 20 points)

1.
$$\forall x \in \mathbb{R}_{+}^{*}, f'(x) = \frac{1}{2\sqrt{x}\sqrt{1-x}}$$

2.
$$\forall x \in \mathbb{R}, f'(x) = 2\ln(\operatorname{Arctan}(x)) + \frac{2xe^x}{(1+e^{2x})(\operatorname{Arctan}(e^x)}$$
.

3.
$$\forall x \in \mathbb{R}, f'(x) = \frac{\sin(x)}{\cos^2(x)}, f''(x) = \frac{\cos^2(x) + 2\sin^2(x)}{\cos^3(x)}.$$

4. D'après la formule de Leibniz,

$$f^{(42)}(x) = 2x\sin^{(42)}(x) + 84\sin^{(41)}(x) = -2x\sin(x) + 84\cos(x).$$

5. On a, pour tout $x \ge 0$, d'après la formule de dérivation d'un produit :

$$f'(x) = \sum_{k=1}^{n} \prod_{\substack{i=1\\i\neq k}}^{42} (x+i-1)^{i} \times k(x+k-1)^{k-1}$$

donc:
$$\frac{f'(x)}{f(x)} = \sum_{k=1}^{42} \frac{k}{x+k-1}$$
 puis: $\frac{f'(1)}{f(1)} = \sum_{k=1}^{42} 1 = 42$.

On peut aussi passer par la dérivée logarithmique, f'/f étant vue comme la dérivée de $\ln \circ f$.

6. En regardant les termes dominants, $\frac{f(x)}{x} \to 2$, et

$$f(x) - 2x = \frac{2(x^3 + x^2 + x - x^2 - x - 1) - 2x^3 - 2x}{x^2 + 1} \to 0.$$

Asymptote : y = 2x.

7. $\frac{f(x)}{x} \to 1$ et $f(x) - x = \frac{e^{\frac{1}{x}} - 1}{\frac{1}{x}} \to 1$ (limite remarquable).

Asymptote : y = x + 1

8. On a pour tout $x \in \mathbb{R}$,

$$\frac{1}{x^2 + 2x + 10} = \frac{1}{9\left(\left(\frac{x+1}{3}\right)^2 + 1\right)} = \frac{1}{3} \frac{\frac{1}{3}}{1 + \left(\frac{x+1}{3}\right)}.$$

Primitives: $\frac{1}{3} \operatorname{Arctan} \left(\frac{x+1}{3} \right) + K$.

On pose $g: y \mapsto \operatorname{Arctan}\left(\frac{1}{y}\right) - \frac{1}{1+y^2}$.

9.
$$\lim_{x \to -\infty} g(x) = \lim_{x \to +\infty} g(x) = 0$$

10.
$$\lim_{x \to 0^{-}} g(x) = -\frac{\pi}{2} - 1$$
, $\lim_{x \to 0^{+}} g(x) = \frac{\pi}{2} - 1$.

11.
$$\forall y \in \mathbb{R}^*, g'(y) = -\frac{1}{1+y^2} + \frac{2y}{(1+y^2)^2} = -\frac{(y-1)^2}{(1+y^2)^2}$$

Limite en 0^+ et en 0^- : -1.

12.
$$g''(y) = \frac{-2(y-1)(1+y^2)^2 + 2 \times 2y(1+y^2)(y-1)^2}{(1+y^2)^4} = \frac{(y-1)(2y^2 - 4y - 2)}{(1+y^2)^3}$$

Négative sur $]-\infty,1-\sqrt{2}]$, et $[1,1+\sqrt{2}]$, positive ailleurs.

13. Les points d'inflexions sont en $1-\sqrt{2}$, 1 et $1+\sqrt{2}$. On calcule les pentes :

$$f'(1-\sqrt{2}) = -\frac{3+2\sqrt{2}}{4}$$
; $f(1) = 0$; $f(1+\sqrt{2}) = -\frac{3-2\sqrt{2}}{4}$.

14. Voir figure 1.

Soit
$$f: x \mapsto x \operatorname{Arctan}\left(\frac{1}{\ln(|x|)}\right)$$
.

15. Le domaine de définition est $\mathbb{R}^* \setminus \{-1,1\}$, la fonction f est impaire.

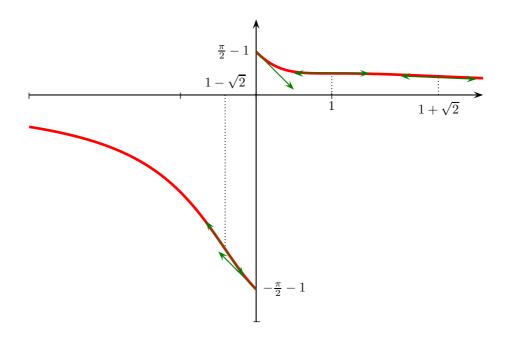


FIGURE 1 – Graphe de g

- 16. Limite en $O^+:0$; limite en $1^-:-\frac{\pi}{2}$; limite en $1^+:\frac{\pi}{2}$; limite en $+\infty:+\infty$.
- 17. $\frac{f(x)}{x} \to 0$, et $f(x) 0x \to +\infty$, donc il y a une direction asymtptotique y = 0, mais pas d'asymptote.
- 18. On constate que pour $x \neq 0$, $f'(x) = g(\ln(|x|))$, et par taux d'accroissement, après prolongement par continuité, f'(0) = 0.
- 19. et 20. Voir figure 2. On se sert bien entendu du rapport entre f et g, nous assurant la décroissance de f sur [0,1[et la croissance sur $]1,+\infty[$, et comme $f''(x)=\frac{1}{x}g'(\ln(|x|))$, la connaissance du signe (négatif) de g' nous assure la concavité de f sur [0,1[et sur $]1,+\infty[$. La pente en 0 est nulle, la pente en 1^- est la limite en 0^- de g, donc $-\frac{\pi}{2}-1$, la pente en 1^+ est de même $\frac{\pi}{2}-1$. On complète par imparité.

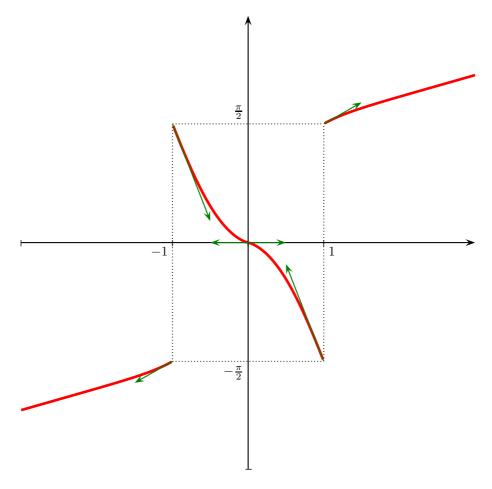


FIGURE 2 – Graphe de f