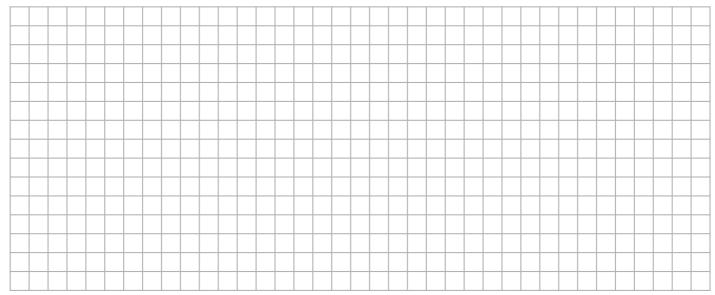
Interrogation nº 1

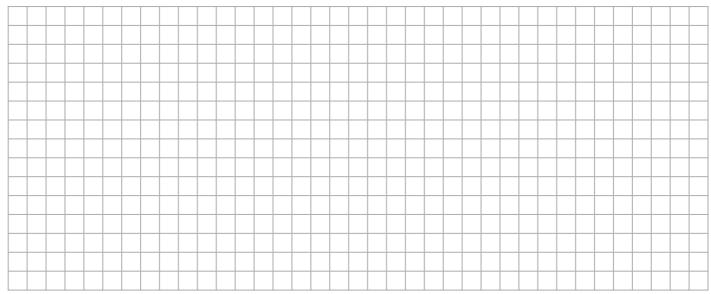
Nom:	Prénom :
Note sur 20:	Observations:
Rang:	

1. Soit (E, \leq) un ensemble ordonné. On suppose que \leq est un bon ordre c'est-à-dire qu'il est total et que tout sous-ensemble de E admet un minimum. Soit m le minimum de E. Soit \mathcal{P} une proposition, définie sur les éléments de E. Montrer que si $\mathcal{P}(m)$ est vraie et que si pour tout $x \in E \setminus \{m\}$, $(\forall y < x, \mathcal{P}(y)) \Longrightarrow \mathcal{P}(x)$, alors la propriété \mathcal{P} est vérifiée pour tout x de E.

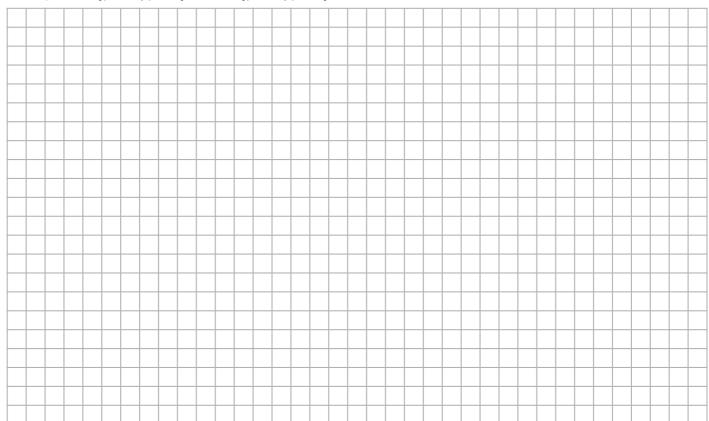


2. Soit (E, \leq) un ensemble ordonné. On dit qu'un sous-ensemble X de E est un sarment original si pour tout $x \in X$ et tout $y \in E, y < x \Longrightarrow y \in X$.

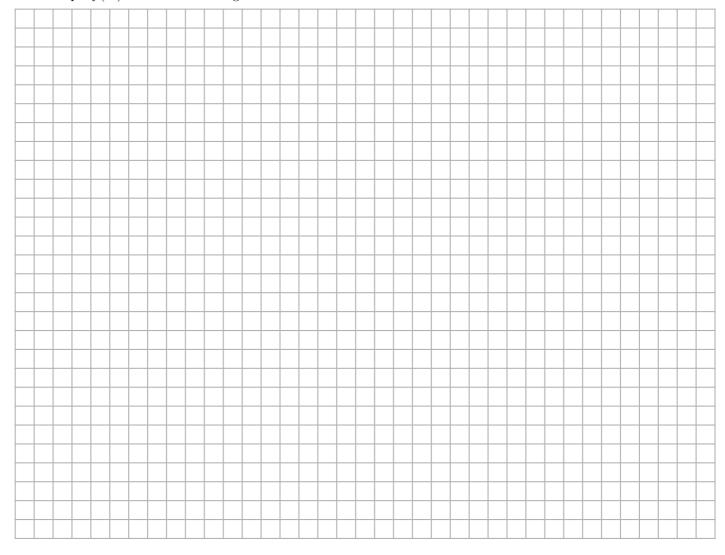
Montrer que l'union et l'intersection d'une famille quelconque de sarments originaux est encore un sarment original.



3. Construire un exemple d'ensemble ordonné fini E et d'un sarment original X de E tel qu'il n'existe pas d'élément x de E tel que $X = \{y \in E \mid y < x\}$ ou $X = \{y \in E \mid y \leqslant x\}$

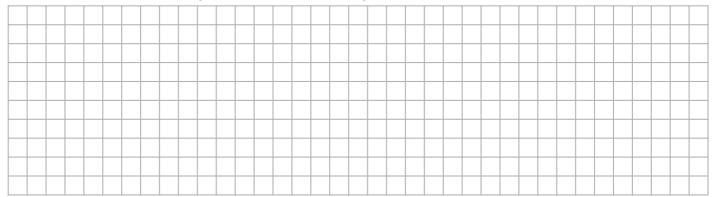


4. Soit f une bijection croissante entre deux ensembles totalement ordonnés E et F, et soit X un sarment original de E. Montrer que f(X) est un sarment original de F.



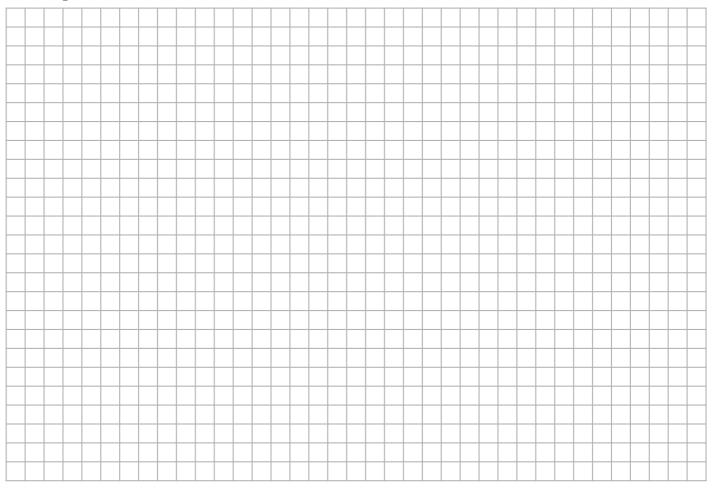
5. On dit qu'un sous-ensemble X de E est un sarment génial si pour tout $x \in X$ il existe y < x tel que $y \in E$. On suppose que E admet un sarment génial non vide. Montrer que E est infini.

6. L'intersection de deux sarments géniaux est-elle un sarment génial?



7. Que peut-on dire de l'intersection d'un sarment génial et d'un sarment original?

8. Un orignal est un ensemble α tel que la relation d'appartenance munisse α d'un bon ordre strict, et vérifiant la propriété de transitivité, c'est-à-dire tel que pour tout $x \in \alpha$, on ait $x \subset E$. Montrer que si α est un orignal, et si $\beta \in \alpha$, alors β est un orignal.



9. Montrer que tout sarment original d'un orignal est un orignal.

