Problème nº 9 : Suites

Problème 1 -

Convergence en un point fixe attractif d'une suite définie par une récurrence (Adapté de CAPES 1998)

Soit α et β deux éléments de $\overline{\mathbb{R}}$ tels que $\alpha < \beta$, et soit $I =]\alpha, \beta[$ l'intervalle ouvert d'extrémités α et β . Soit $f : I \to \mathbb{R}$ une fonction continue sur I. On note $\Omega = \{x \in I \mid f(x) = x\}$ l'ensemble des points fixes de f.

On suppose dans tout le problème que Ω est non vide.

On appellera suite récurrente, ou, s'il faut éviter une ambiguïté, suite récurrente associée à f, une suite $(x_n)_{n\in\mathbb{N}}$ de points de I vérifiant la relation de récurrence :

$$\forall n \in \mathbb{N}, \quad x_{n+1} = f(x_n).$$

L'objet du problème est l'étude de quelques propriétés de ces suites.

Partie I – Existence et convergence des suites récurrentes

- 1. On définit par récurrence des sous-ensembles de I par $I_1 = I$, et : $\forall p \in \mathbb{N}^*$, $I_{p+1} = f^{-1}(I_p)$.
 - (a) Montrer que pour tout $p \in \mathbb{N}^*$, $I_{p+1} \subset I_p$.

On définit
$$A = \bigcap_{p \in \mathbb{N}^*} I_p$$
.

- (b) Montrer que A est un sous-ensemble non vide de I, et que A est stable par f.
- (c) Soit $(x_n)_{n\in\mathbb{N}}$ une suite récurrente associée à f.
 - i. Soit $p \in \mathbb{N}^*$. En considérant l'existence de x_{n+p} , montrer que pour tout $n \in \mathbb{N}, x_n \in I_p$.
 - ii. En déduire que pour tout $n \in \mathbb{N}$, $x_n \in A$.
 - iii. En déduire que le choix d'une valeur initiale x_0 définit une suite récurrente associée à f si et seulement si $x_0 \in A$.
- 2. (a) Déterminer Ω et A pour chacun des exemples suivants :

i.
$$I =]0, 2[$$
 et $\forall x \in I, f_1(x) = \sqrt{x};$

ii.
$$I =]0, 2[$$
 et $\forall x \in I, f_2(x) = x^2;$

iii.
$$I =]0, 2[$$
 et $\forall x \in I, f_3(x) = 2x - 1.$

- (b) Que vaut A lorsque I est stable par f?
- 3. On suppose f croissante, et soit x_0 un point de A tel que $x_0 \leq f(x_0)$.
 - (a) Montrer que la suite récurrente de valeur initiale x_0 converge vers un point de I si et seulement s'il existe un point fixe $y \in \Omega$ tel que $x_0 \leq y$.
 - (b) Justifier que dans ce cas, la limite ℓ de $(x_n)_{n\in\mathbb{N}}$ est le plus petit point fixe qui soit supérieur ou égal à x_0 .
 - (c) Préciser le comportement de la suite $(x_n)_{n\in\mathbb{N}}$ dans le cas où elle ne converge pas vers un point de I.
 - (d) Donner sans démonstration des résultats similaires lorsque $x_0 \ge f(x_0)$.

Partie II - Points fixes attractifs, répulsifs

On suppose dans cette partie que f est dérivable de dérivée continue sur I. On admettra la définition suivante : une fonction h est continue en un point a de son domaine D_h si et seulement si :

$$\forall \varepsilon > 0, \quad \exists \delta > 0, \quad \forall x \in B(a, \delta) \cap D_h, \quad |h(x) - h(a)| < \varepsilon.$$

(En gros : pour toute marge d'erreur ε , quitte à ne pas trop s'éloigner de a, disons de moins de δ , h(x) ne s'éloigne pas de h(a) de plus de ε)

1. Inégalité des accroissements finis

Soit a et b deux éléments de I, et J l'intervalle fermé d'extrémités a et b. On suppose qu'il existe deux réels positifs m et M qu'on se fixe, tels que :

$$\forall x \in J, \quad m \leqslant |f'(x)| \leqslant M.$$

A l'aide d'une intégration, montrer que : $m|b-a| \leq |f(b)-f(a)| \leq M|b-a|$.

2. Points fixes attractifs

Soit r un point fixe de f tel que |f'(r)| < 1. Un tel point fixe sera dit attractif.

(a) Montrer qu'il existe un réel $k \in [0,1[$ et un réel $\delta > 0$, qu'on se fixe pour la suite, tels que la boule $B(r,\delta) =]r - \delta, r + \delta[$ soit incluse dans I, et que :

$$\forall x \in B(r, \varepsilon), |f(x) - r| \le k|x - r|.$$

- (b) Supposons qu'il existe $N \in \mathbb{N}$ tel que $u_N \in B(r, \delta)$. Majorer $|u_n r|$ en fonction de u_N, r, k, N et n.
- (c) En déduire qu'une suite récurrente $(x_n)_{n\in\mathbb{N}}$ converge vers r si et seulement si il existe un indice $N\in\mathbb{N}$ tel que $x_N\in B(r,\delta)$.

3. Points fixes répulsifs

Soit r un point fixe de f tel que |f'(r)| > 1. Un tel point fixe sera dit **répulsif**.

(a) Montrer qu'il existe un réel $\delta > 0$, qu'on se fixe pour la suite, tel que $B(r, \delta) =]r - \delta, r + \delta[$ soit inclus dans I, et que :

$$\forall x \in B(r, \varepsilon), |f(x) - r| \ge |x - r|.$$

(b) Montrer qu'une suite récurrente $(x_n)_{n\in\mathbb{N}}$ converge vers r si et seulement si elle est stationnaire de valeur r, c'est-à-dire s'il existe un indice $N\in\mathbb{N}$ tel que pour tout $n\geqslant N$, $x_n=r$.

4. Un exemple

On considère la fonction f_4 définie sur I =]0,2[par : $\forall x \in]0,2[$, $f_4(x) = \frac{1}{\sqrt{5}}(4-x^2)$.

- (a) Déterminer A.
- (b) Montrer que f_4 a un seul point fixe, et qu'il est répulsif.
- (c) Déterminer les points fixes de $f_4 \circ f_4$.
- (d) Préciser, suivant la valeur initiale, le comportement des suites récurrentes $(x_n)_{n\in\mathbb{N}}$ associées à f_4 . On étudiera notamment la convergence de $(x_n)_{n\in\mathbb{N}}$, ainsi que celle de $(x_{2n})_{n\in\mathbb{N}}$ et $(x_{2n+1})_{n\in\mathbb{N}}$, en précisant la valeur des limites en cas de convergence.

Partie III - Estimation de la vitesse de convergence en un point attractif

Étant donné deux suites $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$, telles que $(v_n)_{n\in\mathbb{N}}$ ne s'annule pas, on rappelle que $u_n=O(v_n)$ si la suite $\left(\frac{u_n}{v_n}\right)_{n\in\mathbb{N}}$ est bornée.

On admettra le résultat suivant (formule de Taylor-Young à l'ordre 2) :

Soit $r \in I$. Alors, si f est dérivable 2 fois et de dérivée seconde continue sur I, alors pour toute suite $(u_n)_{n \in \mathbb{N}}$ de limite r, il existe une suite $(\varepsilon_n)_{n \in \mathbb{N}}$ de limite nulle telle que :

$$f(u_n) = f(r) + (u_n - r)f'(r) + \frac{1}{2}(u_n - r)^2 f''(r) + (u_n - r)^2 \varepsilon_n.$$

On se propose d'étudier la vitesse de convergence d'une suite récurrente $(x_n)_{n\in\mathbb{N}}$ non stationnaire, convergeant vers un point fixe attractif r. On suppose dans la suite de cette partie que f est deux fois dérivable sur I, de dérivée continue.

- 1. Soit k comme dans la question II-2. Montrer que $|x_n r| = O(k^n)$.
- 2. Dans cette question, et uniquement dans cette question, f est définie sur \mathbb{R} par $f(x) = \frac{x}{2} + 2$.
 - (a) Montrer que f est deux fois dérivable, de dérivée seconde continue, et admet un et un seul point fixe r. Montrer que |f'(r)| < 1.
 - (b) Soit $(x_n)_{n\in\mathbb{N}}$ une suite récurrente associée à f. Exprimer x_n en fonction de n et x_0 .
 - (c) En déduire l'existence d'une constante λ que l'on déterminera telle que $x_n r \sim \lambda(f'(r))^n$

Nous cherchons dans la question suivante à généraliser ce résultat à des fonctions f plus générales.

- 3. On suppose que $f'(r) \neq 0$.
 - (a) Montrer, grâce à la formule de Taylor rappelée dans l'énoncé, qu'on a :

$$\forall j \in \mathbb{N}, \ x_{j+1} - r = f'(r)(x_j - r)(1 + R_j), \quad \text{où } R_j = O(k^j).$$

- (b) En déduire que : $\forall n \ge 1$, $x_n r = (f'(r))^n (x_0 r) \prod_{j=0}^{n-1} (1 + R_j)$.
- (c) i. Montrer que pour tout $j \in \mathbb{N}$, $\ln(|1 + R_j|)$ est défini.
 - ii. Justifier que $\ln(|1+R_j|) \sim R_j$
 - iii. En déduire qu'il existe un réel M tel que : $\forall j \in \mathbb{N}, |\ln(|1+R_j|)| \leq Mk^j$.
 - iv. En déduire que la suite $\left(\sum_{j=0}^{n} |\ln(|1+R_{j}|)|\right)_{n\in\mathbb{N}}$ est définie, majorée, puis qu'elle converge.
 - v. En déduire que la suite $\left(\prod_{j=0}^n (1+R_j)\right)_{n\in\mathbb{N}}$ converge vers une limite non nulle.

On admettra pour ce faire que si $\left(\sum_{k=0}^{n}|a_k|\right)_{n\in\mathbb{N}}$ converge dans \mathbb{R} , alors $\left(\sum_{k=0}^{n}a_k\right)_{n\in\mathbb{N}}$ aussi.

- vi. En déduire qu'il existe une constante λ telle que $x_n r \sim \lambda (f'(r))^n$.
- 4. On suppose que f'(r) = 0 et que $f''(r) \neq 0$.
 - (a) Montrer qu'il existe une suite $(S_j)_{j\in\mathbb{N}}$ de limite nulle telle que :

$$\forall j \in \mathbb{N}, \ x_{j+1} - r = \frac{f''(r)}{2} (x_j - r)^2 (1 + S_j).$$

(b) En déduire que pour tout $n \ge 2$,

$$x_n - r = \frac{2}{f''(r)} \left(\frac{f''(r)}{2} (x_0 - r) \prod_{j=0}^{n-2} |1 + S_j|^{2^{-j-1}} \right)^{2^n} (1 + S_{n-1}).$$

- (c) En s'inspirant de la question III-2(c), montrer que la suite $\left(\prod_{j=0}^{n-2}|1+S_j|^{2^{-j-1}}\right)_{n\geqslant 2}$ converge et que sa limite est non nulle.
- (d) On note, pour tout $n \ge 2$, $\pi_n = \lim_{m \to +\infty} \prod_{j=n-1}^m |1 + S_j|^{2^{-j-1}}$. Soit $\varepsilon > 0$.
 - i. Montrer qu'il existe N tel que pour tout $n \ge N$, et tout $j \ge n-1$,

$$\left| 2^n \ln(|1 + S_j|^{2^{-j-1}}) \right| \leqslant \frac{1}{2^{j+1-n}} \varepsilon.$$

- ii. En déduire que pour tout $n \ge N$, $|2^n \ln \pi_n| \le 2\varepsilon$. Que dire de la suite $(2^n \ln \pi_n)_{n \ge 2}$?
- iii. Montrer qu'il existe une constante $\lambda \in]0,1[$, dépendant de x_0 , telle que $x_n r \sim \frac{2\lambda^{2^n}}{f''(r)}$

Partie IV - Un exemple : les suites de Héron

Soit a > 0. Pour tout entier $p \ge 2$, on définit une fonction f_p sur $I =]0, +\infty[$ par $f_p(x) = \frac{1}{n}\left((p-1)x + \frac{a}{x^{p-1}}\right)$.

- 1. Vérifier que la fonction f_p satisfait aux hypothèses de la partie III, question 4.
- 2. Étudier les variations de f_n .
- 3. Montrer que quelle que soit la valeur initiale $x_0 > 0$, la suite récurrente associée à f_p existe, qu'elle vérifie $x_n \geqslant a^{\frac{1}{p}}$. pour tout $n \geqslant 1$, et qu'elle converge vers $a^{\frac{1}{p}}$

Étant donné une suite récurrente $(x_n)_{n\in\mathbb{N}}$ non stationnaire associée à f_p , on note $\lambda_0(x_0)$ la constante donnée par III-3(d)iii telle que $x_n - r \underset{+\infty}{\sim} \frac{2}{f''(r)} (\lambda_p(x_0))^{2^n}$.

- 4. Dans cette question, on suppose que p = 2.
 - (a) Montrer que pour tout $n \in \mathbb{N}$, on peut écrire x_n sous la forme $\frac{u_n}{v_n}$, où $(u_n)_{n \in \mathbb{N}}$ et $(v_n)_{n \in \mathbb{N}}$ sont définies par $u_0 = x_0, v_0 = 1$ et les relations :

$$\forall n \in \mathbb{N}, \quad u_{n+1} = u_n^2 + av_n^2 \quad \text{et} \quad v_{n+1} = 2u_n v_n.$$

- (b) Exprimer pour tout $n \in \mathbb{N}$, $u_{n+1} + \sqrt{a} \cdot v_{n+1}$ en fonction de $u_n + \sqrt{a} \cdot v_n$.
- (c) Exprimer $u_n + \sqrt{a} \cdot v_n$, $u_n \sqrt{a} \cdot v_n$ puis x_n en fonction de x_0 , \sqrt{a} et n.
- (d) En déduire que $\lambda_2(x_0) = \frac{2|x_0 \sqrt{a}|}{x_0 + \sqrt{a}}$. 5. On ne suppose plus que p = 2. Un nombre réel r > 0 étant donné, on associe, à tout entier naturel q > 1, la fonction g_q définie $\sup]0, +\infty[$ $par g_q(x) = \left(\frac{1}{2}\left(x^q + \frac{r^{2q}}{x^q}\right)\right)^{\frac{1}{q}}.$
 - (a) i. Montrer que, quelle que soit la valeur $y_0>0$, la suite récurrente $(y_n)_{n\in\mathbb{N}}$ associée à g_q existe.
 - ii. Donner l'expression de y_n en fonction de y_0 , r, p et n.

Indication: Exprimer et reconnaître une relation de récurrence pour $(y_n^q)_{n\in\mathbb{N}}$.

- iii. Justifier que $\sum_{\ell=0}^{q-1} r^{\ell} y_n^{q-1-\ell} = y_n^{q-1} + r y_n^{q-2} + \dots + r^{q-2} y_n + r^{q-1} \underset{+\infty}{\sim} q r^{q-1}.$
- iv. En déduire que si $(y_n)_{n\in\mathbb{N}}$ n'est pas stationnaire, il existe deux constantes non nulles μ_q et C, que l'on explicitera en fonction de r, q et y_0 , telles que $y_n - r \sim C(\mu_q)^{2^n}$.
- (b) i. Soit k la fonction définie sur $[0,\frac{1}{2}]$ par $k(x)=\frac{x^2}{1+x}+\ln(1-x^2)$. Déterminer les variations de k, puis son signe.
 - ii. En déduire les variations de la fonction h définie sur $[0, \frac{1}{2}]$ par $h(x) = \ln(1-x) \frac{1}{x}\ln(1-x^2)$.

Soit
$$(u_p)_{p\geqslant 2}$$
 la suite définie par $u_p=\left(\frac{p-1}{p}\right)^{p-1}$, et soit, pour tout $p\geqslant 2$, $v_p=\frac{u_{p+1}}{u_p}$.

- iii. Montrer, à l'aide de la question précédente, que $(v_p)_{p\geqslant 2}$ est croissante de limite 1.
- iv. En déduire que pour tout $p \ge 2$, $u_p \le \frac{1}{2}$.
- (c) On pose $r = a^{\frac{1}{p}}$. Montrer que pour tout $x \geqslant a^{\frac{1}{p}}$, $f_p(x) \leqslant g_{p-1}(x)$.

Indication : on pourra élever $f_p(x)$ à la puissance p-1, à l'aide de la formule du binôme, en ne gardant que les termes extrémaux. N'oubliez pas la question précédente.

- (d) On suppose que $x_0 > a^{\frac{1}{p}}$. Soit $(x_n)_{n \in \mathbb{N}}$ et $(y_n)_{n \in \mathbb{N}}$ les suites récurrentes de même valeur initiale x_0 , associées respectivement à f_p et g_{p-1} .
 - i. Montrer que pour tout $n \in \mathbb{N}$, $a^{\frac{1}{p}} < x_n \leqslant y_n$.
 - ii. En déduire une majoration explicite de $\lambda_p(x_0)$.
- (e) On suppose maintenant que $0 < x_0 < a^{\frac{1}{p}}$. Montrer que $\lambda_p(x_1) = \lambda_p(x_0)^2$. En déduire une majoration explicite de $\lambda_p(x_0)$.