DM nº 6: Réels

Corrigé du problème 1 - Un théorème de Lagrange sur les fractions continues périodiques

Partie I – Développement en fraction continue d'un rationnel

1. (a) Soit, pour $n \in \mathbb{N}$, $\mathcal{P}(n)$ la propriété :

$$\forall (a_0, \dots, a_n) \in Z_n, \quad \forall x \in \mathbb{Q}_+, \quad [a_0, \dots, a_n](x) \in \mathbb{Q}.$$

• Initialisation. Soit $(a_0) \in Z_0$, On a alors, pour tout $n \in \mathbb{Q}_+$:

$$[a_0](x) = a_0 + x \in \mathbb{Q},$$

en tant que somme de deux rationnels $(a_0 \in \mathbb{Z} \subset \mathbb{Q})$.

• Hérédité : soit $n \in \mathbb{N}$ tel que $\mathcal{P}(n)$ soit vérifié. On considère $(a_0, \dots, a_{n+1} \in Z_{n+1})$. Ainsi,

$$[a_0, \dots, a_{n+1}](x) = [a_0, \dots, a_n] \left(\frac{1}{a_{n+1} + x}\right).$$

Or, $(a_0, \ldots, a_n) \in \mathbb{Z}_n$ et $\frac{1}{a_{n+1} + x} \in \mathbb{Q}_*$ (remarquez que l'hypothèse $x \ge 0$ et $a_{n+1} \ge 1$ nous assure de la bonne définition), donc, par hypothèse de récurrence,

$$[a_0,\ldots,a_n]\left(\frac{1}{a_{n+1}+x}\right)\in\mathbb{Q}$$
 soit: $[a_0,\ldots,a_{n+1}](x)\in\mathbb{Q}$.

• D'après le principe de récurrence,

$$\forall n \in \mathbb{N}, \quad \forall (a_0, \dots, a_n) \in \mathbb{Z}_n, \quad \forall x \in \mathbb{Q}_+, \quad \boxed{[a_0, \dots, a_n](x) \in \mathbb{Q}_+}$$

- (b) Une fraction continue finie s'écrit sous la forme $[a_0, \ldots, a_n] = [a_0, \ldots, a_n](0)$, avec $(a_0, \ldots, a_n) \in Y_n \subset Z_n$ et $0 \in \mathbb{Q}_+$. Ainsi, d'après la question précédente, toute fraction continue finie est un rationnel.
- 2. Soit $x \in \mathbb{Q}$, et $p, q, n, (r_k)$ et (a_k) comme dans l'énoncé.
 - (a) On montre, par récurrence sur $k \in [0, n]$, que pour tout $k \in [0, n]$, $x = [a_0, \dots, a_k] \left(\frac{r_k}{r_{k-1}}\right)$.
 - Lorsque k = 0, par définition de r_0 et a_0 ,

$$p = a_0 q + r_0$$
, donc: $x = \frac{p}{q} = a_0 + \frac{r_0}{q} = a_0 + \frac{r_0}{r_{-1}} = [a_0] \left(\frac{r_0}{r_{-1}}\right)$.

• Soit $k \in [0, n-1]$, et supposons que

$$x = [a_0, \dots, a_k] \left(\frac{r_k}{r_{k-1}}\right).$$

Alors,

$$r_{k-1} = r_k a_{k+1} + r_{k+1}$$
 donc: $\frac{r_{k-1}}{r_k} = a_{k+1} + \frac{r_{k+1}}{r_k}$.

par conséquent,

$$x = [a_0, \dots, a_k] \left(\frac{1}{a_{k+1} + \frac{r_{k+1}}{r_k}} \right) = [a_0, \dots, a_{k+1}] \left(\frac{r_{k+1}}{r_k} \right),$$

d'après la formule de récurrence définissant les fractions continues.

• D'après le principe de récurrence, pour tout $k \in [0, n]$,

$$x = [a_0, \dots, a_k] \left(\frac{r_k}{r_{k-1}}\right)$$

(b) En particulier, pour k = n, on obtient :

$$x = [a_0, \dots, a_n] \left(\frac{r_n}{r_{n-1}}\right) = [a_0, \dots, a_n](0) = [a_0, \dots, a_n].$$

Par ailleurs, comme $p \wedge q = 1$, $r_{n-1} = p \wedge q = 1$. Les restes formant une suite strictement décroissante à partir du rang -1, si $n \geq 1$, $r_{n-2} > 1$, et le quotient a_n de r_{n-2} par a_{n-1} vérifie $a_n \geq 2$. Ainsi, $[a_1, \ldots, a_n] \in Y_n$. C'est aussi vrai si n = 0, puisqu'il n'y a pas de condition de minoration à donnner dans ce cas.

Ainsi, x est bien développable en fraction continue finie, et

$$x = [a_1, \dots, a_n]$$

Partie II - Réduction et convergence des fractions continues

1. (a) Pour tout $(a_0, \ldots, a_n) \in Z_n$, on a :

$$[a_0, \dots, a_n] = a_0 + \frac{1}{[a_1, \dots, a_n]}.$$

Cela se « voit » sur la forme développée de la fraction continue, mais peut aussi plus rigoureusement se démontrer par récurrence. On montre plus généralement que pour tout $n \in \mathbb{N}^*$, et pour tout $x \in \mathbb{R}_+$,

$$[a_0, \dots, a_n](x) = a_0 + \frac{1}{[a_1, \dots, a_n](x)}.$$

- Si n = 1, $[a_0, a_1](x) = [a_0] \left(\frac{1}{a_1 + x}\right) = a_0 + \frac{1}{a_1 + x} = a_0 + \frac{1}{[a_1](x)}$.
- Soit $n \in \mathbb{N}$ tel que pour tout $(a_0, \dots a_n)$ et tout $x \in \mathbb{R}_+$,

$$[a_0, \dots, a_n](x) = a_0 + \frac{1}{[a_1, \dots, a_n](x)}.$$

Alors en particulier,

$$[a_0, \dots, a_n] \left(\frac{1}{a_{n+1} + x} \right) = a_0 + \frac{1}{[a_1, \dots, a_n] \left(\frac{1}{a_{n+1} + x} \right)},$$

c'est-à-dire

$$[a_0, \ldots, a_{n+1}](x) = a_0 + \frac{1}{[a_1, \ldots, a_{n+1}](x)},$$

• Ainsi, le principe de récurrence nous assure que pour tout $n \in \mathbb{N}^*$,

$$[a_0,\ldots,a_n](x) = a_0 + \frac{1}{[a_1,\ldots,a_n](x)}$$

(b) On a alors

$$[a_0, \dots, a_n] = a_0 + \frac{q(a_1, \dots, a_n)}{p(a_1, \dots, a_n)}$$
$$= \frac{a_0 p(a_1, \dots, a_n) + q(a_1, \dots, a_n)}{p(a_1, \dots, a_n)}.$$

Or, tout diviseur d commun de $a_0p(a_1, \ldots, a_n) + q(a_1, \ldots, a_n)$ et de $p(a_1, \ldots, a_n)$ divise aussi $a_0p(a_1, \ldots, a_n)$, et donc, par différence, il divise aussi $q(a_1, \ldots, a_n)$. Il s'agit donc d'un diviseur commun de $p(a_1, \ldots, a_n)$ et de $q(a_1, \ldots, a_n)$, qui ne peut être que 1 ou -1.

On en déduit que $\frac{a_0p(a_1,\ldots,a_n)+q(a_1,\ldots,a_n)}{p(a_1,\ldots,a_n)}$ est une représentation irréductible de $[a_0,\ldots,a_n]$. De plus, on s'assure facilement que $[a_1,\ldots,a_n]$ est positif (par récurrence sur n, en utilisant la question 1(a), qui nous ramène à la positivité de $[a_2,\ldots,a_n]$ qu'on obtient par hypothèse de récurrence; on obtient même $[a_1,\ldots,a_n] \geqslant a_1$; attention ceci est faux si on commence à a_0). Par conséquent, il s'agit de l'unique représentation irréductible à dénominateur positif. Ainsi :

$$p(a_0, \dots a_n) = a_0 p(a_1, \dots, a_n) + q(a_1, \dots, a_n)$$
 et $q(a_0, \dots, a_n) = p(a_1, \dots, a_n)$

(c) On montre par récurrence sur $n \in \mathbb{N}$ que pour tout $(a_0, \ldots, a_n) \in Z_{n+1}$,

$$\frac{p(a_0,\ldots,a_{n+1})}{q(a_0,\ldots,a_{n+1})} - \frac{p(a_0,\ldots,a_n)}{q(a_0,\ldots,a_n)} = \frac{(-1)^{n+1}}{q(a_0,\ldots,a_n)q(a_0,\ldots,a_{n+1})}.$$

• Pour n = 0, $[a_0] = a_0 = \frac{a_0}{1}$, donc $p(a_0) = a_0$ et $q(a_0) = 1$. De plus, $[a_0, a_1] = a_0 + \frac{1}{a_1} = \frac{a_0 a_1 + 1}{a_1}$. Or,

$$a_0a_1 + 1 \wedge a_1 = 1 \wedge a_1 = a_1$$

donc $p(a_0, a_1) = 1$ et $q(a_0, a_1) = a_1$. Par conséquent,

$$\frac{p(a_0, a_1)}{q(a_0, a_1)} - \frac{p(a_0)}{q(a_0)} = \frac{1}{a_0} = \frac{(-1)^0}{q(a_0)q(a_0, a_1)}.$$

• Supposons la propriété aquise pour les familles $(b_0, \ldots, b_{n+1}) \in Z_{n+1}$, et soit $(a_0, \ldots, a_{n+2}) \in Z_{n+2}$. Ainsi, d'après la question 1(b),

$$\frac{p(a_0, \dots, a_{n+2})}{q(a_0, \dots, a_{n+2})} - \frac{p(a_0, \dots, a_{n+1})}{q(a_0, \dots, a_{n+1})} = \frac{a_0 p(a_1, \dots, a_{n+2}) + q(a_1, \dots, a_{n+2})}{p(a_1, \dots, a_{n+2})} - \frac{a_0 p(a_1, \dots, a_{n+1}) + q(a_1, \dots, a_{n+1})}{p(a_1, \dots, a_{n+1})}$$

$$= \frac{q(a_1, \dots, a_{n+2})}{p(a_1, \dots, a_{n+2})} - \frac{q(a_1, \dots, a_{n+1})}{p(a_1, \dots, a_{n+1})}$$

Or, pour tous rééls non nuls x et y,

$$\frac{1}{x} - \frac{1}{y} = \frac{y - x}{xy},$$

donc

$$\frac{p(a_0,\ldots,a_{n+2})}{q(a_0,\ldots,a_{n+2})} - \frac{p(a_0,\ldots,a_{n+1})}{q(a_0,\ldots,a_{n+1})} = -\frac{q(a_1,\ldots,a_{n+1})q(a_1,\ldots,a_{n+2})}{p(a_1,\ldots,a_{n+1})p(a_1,\ldots,a_{n+2})} \left(\frac{p(a_1,\ldots,a_{n+2})}{q(a_1,\ldots,a_{n+2})} - \frac{p(a_1,\ldots,a_{n+1})}{q(a_1,\ldots,a_{n+1})}\right)$$

$$= -\frac{q(a_1,\ldots,a_{n+1})q(a_1,\ldots,a_{n+2})}{p(a_1,\ldots,a_{n+1})p(a_1,\ldots,a_{n+2})} \frac{(-1)^{n+1}}{q(a_1,\ldots,a_{n+1})q(a_1,\ldots,a_{n+2})},$$

d'après l'hypothèse de récurrence. On termine à l'aide de la relation trouvée en 1(b) :

$$\frac{p(a_0, \dots, a_{n+2})}{q(a_0, \dots, a_{n+2})} - \frac{p(a_0, \dots, a_{n+1})}{q(a_0, \dots, a_{n+1})} = \frac{(-1)^{n+2}}{p(a_1, \dots, a_{n+1})(a_1, \dots, a_{n+2})}$$
$$= \frac{(-1)^{n+2}}{q(a_0, \dots, a_{n+1})q(a_0, \dots, a_{n+2})}$$

• Ainsi, d'après le principe de récurrence, pour tout $n \in \mathbb{N}$, et tout $(a_0, \ldots, a_{n+1}) \in Z_{n+1}$,

$$\frac{p(a_0,\ldots,a_{n+1})}{q(a_0,\ldots,a_{n+1})} - \frac{p(a_0,\ldots,a_n)}{q(a_0,\ldots,a_n)} = \frac{(-1)^{n+1}}{q(a_0,\ldots,a_n)q(a_0,\ldots,a_{n+1})}.$$

- 2. Soit $(a_n)_{n\in\mathbb{N}}\in Z_{\infty}$.
 - (a) Puisque $[a_0, a_1, \ldots, a_n]$ et $[1, a_1, \ldots, a_n]$ diffèrent de l'entier $a_0 1$, le dénominateur de leur représentants irréductibles est le même. Donc $q(a_0, \ldots, a_n) = q(1, a_1, \ldots, a_n).$
 - (b) Encore une fois, il s'agit d'une récurrence sur n, pour montrer que pour tout $n \ge 1$, et $(a_0, \ldots, a_{n+1}) \in Z_{n+1}$ vérifiant de plus $a_0 > 0$,

$$p(a_0, a_1, \dots, a_n) < p(a_0, \dots, a_{n+1})$$
 et $q(a_0, \dots, a_n) < q(a_0, \dots, a_{n+1}),$

(sauf au rang n = 0 pour cette dernière inégalité, pouvant alors être large).

• Pour n = 0, on obtient :

$$p(a_0) = a_0 < a_0 a_1 + 1 = p(a_0, a_1)$$

 $(car a_1 \ge 1) et$

$$q(a_0) = 1 \leqslant a_1 = q(a_0, a_1)$$

Pour l'initialisation, on n'a que l'inégalité large ce qui est en accord avec l'énoncé.

• Supposons la propriété vraie au rang n, on a alors d'après 1(b):

$$p(a_0, a_1, \dots, a_{n+1}) = a_0 p(a_1, \dots, a_{n+1}) + q(a_1, \dots, a_{n+1})$$

$$< a_0 p(a_1, \dots, a_{n+2}) + q(a_1, \dots, a_{n+2}),$$

les inégalités sur chacun des deux termes étant assurées par l'hypothèse de récurrence, la première étant stricte. Ainsi, encore d'après 1(b),

$$p(a_0, a_1, \dots, a_{n+1}) < p(a_0, \dots, a_{n+2}).$$

De même,

$$q(a_0, \ldots, a_{n+1}) = p(a_1, \ldots, a_{n+1}) < p(a_1, \ldots, a_{n+2}) = q(a_0, \ldots, a_{n+2}),$$

l'inégalité étant cette fois stricte et sera donc stricte à toutes les étapes de la récurrence).

• Ainsi, d'après le principe de récurrence,

$$(p(a_0,\ldots,a_n))_{n\in\mathbb{N}}$$
 et $(p(a_0,\ldots,a_n))_{n\in\mathbb{N}}$ * sont strictement croissantes.

- (c) Cette fois, on n'a plus l'hypothèse $a_0 > 0$, mais les deux questions précédentes nous assurent tout de même la stricte croissance de $(q(a_0, \ldots, a_n))_{n \in \mathbb{N}^*}$. Comme il s'agit d'une suite d'entiers, elle diverge nécessairement vers $+\infty$. On déduit alors de la question 1(c) que :
 - $\frac{p(a_0, \dots, a_{n+1})}{q(a_0, \dots, a_{n+1})} \frac{p(a_0, \dots, a_n)}{q(a_0, \dots, a_n)} \longrightarrow 0,$ donc en particulier $[a_0, \dots, a_{2n+1}] [a_0, \dots, a_{2n}] \longrightarrow 0$
 - $([a_0, \ldots, a_{2n}])$ est croissante. En effet :

$$[a_0,\ldots,a_{2n+2}]-[a_0,\ldots,a_{2n}]=-\frac{1}{q(a_0,\ldots,a_{2n+1})q(a_0,\ldots,a_{2n+2})}+\frac{1}{q(a_0,\ldots,a_{2n})q(a_0,\ldots,a_{2n+1})}>0,$$

par croissante stricte de q.

• De la même façon, $([a_0, \ldots, a_{2n+1}])$ est décroissante.

Le résultat admis dans le préambule nous assure alors que $([a_0,\ldots,a_n])$ converge.

Ainsi la fraction continue $[a_0, \ldots, a_n, \ldots]$ converge.

3. Soit $(a_n)_{n\in\mathbb{N}}\in Z_{\infty}$, et $x=[a_0,\ldots,a_n,\ldots]$. La représentation irréductible de $[a_0,\ldots,a_n]$ est

$$[a_0,\ldots,a_n]=\frac{p(a_0,\ldots,a_n)}{q(a_0,\ldots,a_n)}.$$

Soit alors $\frac{c}{d}$ un rationnel tel que $|d| \leq q(a_0, \ldots, a_n)$. On suppose que $\frac{c}{d} \neq [a_0, \ldots, a_n]$. On a donc

$$\begin{aligned} \left| \left[a_0, \dots, a_n \right] - \frac{c}{d} \right| &= \left| \frac{p(a_0, \dots, a_n)}{q(a_0, \dots, a_n)} - \frac{c}{d} \right| \\ &= \frac{|dp(a_0, \dots, a_n) - cq(a_0, \dots, a_n)|}{|d|q(a_0, \dots, a_n)} \\ &\geqslant \frac{1}{|d|q(a_0, \dots, a_n)}. \end{aligned}$$

En effet puisque $cd \neq [a_O, \ldots, a_n] \neq 0$, $dp(a_0, \ldots, a_n) - cq(a_0, \ldots, a_n)$ ne peut pas être nul, et comme il s'agit d'un entier, sa valeur absolue est au moins égale à 1. Ainsi, puisque $|d| \leq q(a_0, \ldots, a_n) < q(a_0, \ldots, a_{n+1})$,

$$\left| [a_0, \dots, a_n] - \frac{c}{d} \right| > \frac{1}{q(a_0, \dots, a_n)q(a_0, \dots, a_{n+1})}$$
$$= \left| [a_0, \dots, a_n] - [a_0, \dots, a_{n+1}] \right|$$

De même, en mettant sur le même dénominateur, on trouve directement

$$\left| [a_0, \dots, a_{n+1}] - \frac{c}{d} \right| \ge \frac{1}{q(a_0, \dots, a_{n+1})q(a_0, \dots, a_n)}$$

$$= \left| [a_0, \dots, a_n] - [a_0, \dots, a_{n+1}] \right|$$

$$\ge \left| [a_0, \dots, a_n] - [a_0, \dots, a_{n+1}] \right|.$$

Posons $\varepsilon_n = \frac{1}{q(a_0, \dots, a_{n+1})q(a_0, \dots, a_n)}$, et $x_n = [a_0, \dots, a_n]$ et de façon similaire pour n+1. Supposons pour se fixer les idées $x_n < x_{n+1}$ (l'autre cas étant similaire). Puisque $\varepsilon_n \geqslant |x_{n+1} - x_n|$,

$$]x_n, x_{n+1}[\subset B(x_n, \varepsilon_n) \cup B(x_{n+1}, \varepsilon_n).$$

Ainsi,

$$B(x_n, \varepsilon_n) \cup B(x_{n+1}, \varepsilon_n) =]x_n - \varepsilon_n, x_{n+1} + \varepsilon_n[.$$

par conséquent, puisque $x_n < x < x_{n+1}$,

$$x_n - \varepsilon_n < x - \varepsilon_n < x + \varepsilon_n < x_{n+1} + \varepsilon_n$$

donc $B(x, \varepsilon_n) \subset B(x_n, \varepsilon_n) \cup B(x_{n+1}, \varepsilon_n)$. Puisque $\frac{c}{d} \notin B(x_n, \varepsilon_n) \cup B(x_{n+1}, \varepsilon_n)$, on en déduit que $\frac{c}{d} \notin B(x, \varepsilon_n)$, et donc

$$\left|\frac{c}{d} - x\right| \geqslant \varepsilon_n \geqslant |x_n - x_{n+1}| > |x_n - x|,$$

la dernière inégalité provenant de l'encadrement $x_n < x < x_{n+1}$.

Ainsi, $[a_0, \ldots, a_n]$ est une meilleure approximation de x

Partie III – Exitence et unicité du développement en fraction continue

1. Variations.

Pour tout n la fonction F_{n+1} est la fonction qui à x associe $F_n\left(\frac{1}{a_{n+1}+x}\right)$. Or, $x\mapsto\frac{1}{a_{n+1}+x}$ est strictement décroissante sur \mathbb{R}_+ , donc F_{n+1} est obtenue en composant F_n par une fonction strictement décroissante. On en déduit que si F_n est strictement monotone, F_{n+1} aussi, de sens de variation opposé. Or $F_0=x\mapsto a_0+x$ est strictement croissante. Ainsi, les F_n sont toutes strictement monotones, de sens de variation alternant : toutes les fonctions F_{2n} sont de même sens de variation que F_0 et F_{2n+1} de sens de variation opposé.

Ainsi si n est paire, F_n est strictement croissante, et si n est impaire, F_n est strictement décroissante

2. Existence.

Soit $x \in \mathbb{R} \setminus \mathbb{Q}$. Soit $a_0 = [x]$ et $b_0 = \{x\}$ (partie décimale de x), et pour tout $n \in \mathbb{N}$:

$$a_{n+1} = \left| \frac{1}{b_n} \right|$$
 et $b_{n+1} = \left\{ \frac{1}{b_n} \right\}$

- (a) On montre par récurrence la propriété suivante : pour tout $n \in \mathbb{N}$, $a_0, \ldots, a_n, b_0, \ldots, b_n$ sont bien définis, et $a = [a_0, \ldots, a_n](b_n)$.
 - Pour n = 0, l'énoncé définit a_0 et b_0 , et de plus

$$x = |x| + \{x\} = a_0 + b_0 = [a_0](b_0).$$

• Soit $n \in \mathbb{N}$. Supposons la propriété vérifiée au rang n. Alors, pour commencer, $b_n \neq 0$, sinon $x = [a_0, \ldots, a_n]$ serait rationnel d'après la question I-1(a). Donc a_{n+1} et b_{n+1} sont bien définis. De plus,

$$x = [a_0, \dots, a_n](b_n)$$

$$= [a_0, \dots, a_n] \left(\frac{1}{1/b_n}\right)$$

$$= [a_0, \dots, a_n] \left(\frac{1}{a_{n+1} + b_{n+1}}\right)$$

$$= [a_0, \dots, a_{n+1}](b_{n+1}).$$

• Cela prouve bien, d'après le principe de récurrence, que les a_n et b_n sont bien définis, et que pour tout $n \in \mathbb{N}$,

$$x = [a_0, \dots, a_n](b_n)$$

(b) Soit $n \in \mathbb{N}$. On a donc, par croissance de F_{2n} et positivité de b_{2n} :

$$[a_0, \ldots, a_{2n}] = [a_0, \ldots, a_{2n}](0) \leqslant [a_0, \ldots, a_{2n}](b_{2n}) = x.$$

De façon similaire,

$$[a_0, \dots, a_{2n+1}] = [a_0, \dots, a_{2n}] \left(\frac{1}{a_{2n+1}}\right)$$

$$\geqslant [a_0, \dots, a_{2n}] (b_{2n}) \qquad (\operatorname{car} F_{2n} \text{ est croissante et } a_{2n+1} \leqslant \frac{1}{b_n}).$$

$$= x.$$

Ainsi,

$$[a_0, \dots, a_{2n}] \leqslant x \leqslant [a_0, \dots, a_{2n+1}].$$

(c) Or, on sait d'après la partie II, que $([a_0, \ldots, a_n])$ converge vers $[a_0, \ldots, a_n, \ldots]$, donc aussi $([a_0, \ldots, a_{2n}])$ et $([a_0, \ldots, a_{2n+1}])$. Ainsi, en passant à la limite dans l'encadrement précédent (ce n'est pas vraiment le théorème d'encadrement ici, puisqu'il n'y a pas d'existence de limite à établir pour le terme encadré), on obtient :

$$x = [a_0, \dots, a_{,} \dots]$$

3. Unicité.

Soit (a_k) et (b_k) deux éléments appartenant chacun à l'un des Y_n ou à Z_∞ . Soit k_0 le rang de la première différence entre les deux suites (a_n) et (b_n) .

(a) On suppose dans un premier temps k_0 impair. On a alors :

$$[a_{k_0}, \dots, a_n, \dots] = a_{k_0} + \frac{1}{[a_{k_0+1}, \dots]} > a_{k_0}.$$

De la même manière

$$[a_{k_0+1},\dots] > a_{k_0+1} \ge 1,$$

donc

$$[a_{k_0}, \dots, a_n, \dots] = a_{k_0} + \frac{1}{[a_{k_0+1}, \dots]} < a_{k_0} + 1 \le b_{k_0}.$$

Ainsi.

$$a_{k_0} < [a_{k_0}, \dots, a_n, \dots] < b_{k_0}.$$

On déduit de la croissance stricte de $F_{k_0-1}: x \mapsto [a_0, \dots, a_{k_0-1}](x)$, que

$$F_{k_0-1}\left(\frac{1}{a_{k_0}}\right) > F_{k_0-1}\left(\frac{1}{[a_{k_0},\ldots,a_n,\ldots]}\right) > F_{k_0}\left(\frac{1}{b_{k_0}}\right),$$

c'est-à-dire, puisque F_{k_0-1} correspond aussi à $x \mapsto [b_0, \dots, b_{k_0-1}](x)$ (par définition de k_0),

$$[a_0,\ldots,a_{k_0}] > [(a_n)] > [b_0,\ldots,b_{k_0}],$$

La première inégalité est aussi vraie pour (b_n) , donc

$$[b_0,\ldots,b_{k_0}] > [(b_n)].$$

Ainsi, on a une inégalité stricte $[(a_n)] > [(b_n)]$, nous assurant que ces deux quantités ne sont pas égales. Si k_0 est pair, le raisonnement est le même en inversant tous les sens de variation, à condition toutefois que $k_0 \neq 0$. Si $k_0 = 0$, on obtient directement, du fait que comme ci-dessus $[a_1, \ldots, a_n, \ldots] > 1$,

$$a_0 < [a_0, \ldots, a_n, \ldots] < a_0 + 1 \le b_0 < [b_0, \ldots, b_n, \ldots],$$

ce qui permet aussi de conclure.

(b) Si a_{k_0} n'est pas défini alors que b_{k_0} l'est, et que les précédents sont égaux, alors certaines inégalités précédentes restent vraies, et on peut écrire dans le cas k_0 impair (s'adaptant facilement dans le cas k_0 pair) :

$$[(a_k)] = [a_0, \dots, a_{k_0-1}] = F_{k_0-1}(0) > F_{k_0-1}\left(\frac{1}{b_{k_0}}\right) = [b_0, \dots, b_{k_0}] > [(b_n)].$$

Ainsi, on aboutit à la même conclusion $[(a_n)] \neq [(b_n)]$

On peut bien sûr dans les deux questions précédentes intervertir le rôle de (a_n) et (b_n) . Ainsi, lorsque $(a_n) = \neq (b_n)$ (ces suites étant finies ou infinies), les développements associés définissent des réels distincts. Cela nous assure bien l'unicité du développement en fraction continue d'un réel x.

Partie IV – Théorème de Lagrange sur les fractions continues périodiques

1. • Supposons x quadratique, et soit $P = aX^2 + bX + c$ un polynôme dont il est racine, a, b et c étant entiers. Son discrimant Δ est aussi entier, et

$$x = \frac{-b}{2a} \pm \frac{1}{2a} \sqrt{\Delta}.$$

De plus, Δ n'est pas un carré parfait, sinon $\sqrt{\Delta}$ serait entier, et x serait rationnel. Ainsi, il existe bien deux rationnels $\alpha = \frac{-b}{2a}$ et $\beta = \pm \frac{1}{2a} \neq 0$, ainsi qu'un entier non carré parfait Δ tels que

$$x = \alpha + \beta \sqrt{\Delta}$$

- Réciproquement, soit $x = a + b\sqrt{\Delta}$, où $a \in \mathbb{Q}$, $b \in \mathbb{Q}^*$ et Δ non carré parfait.
 - $\ast\,$ Tout d'abord, x n'est pas rationnel, sinon on pourrait écrire

$$\sqrt{\Delta} = \frac{x-a}{b} \in \mathbb{Q},$$

ce qui contredirait le résultat admis dans le préambule du problème (et démontré en exercice).

* Par ailleurs,

$$(x-a)^2 = b^2 \Delta,$$

donc x est racine d'un polynôme du second degré à coefficients rationnels. Quitte à multiplier ce polynôme par les dénominateurs des coefficients rationnels, il est aussi racine d'un polynôme à coefficients entiers. Ainsi

Ainsi x est bien quadratique

2. Ceci est un exemple. On applique la méthode de la partie III :

$$a_0 = \lfloor \sqrt{2} \rfloor - 1, \qquad b_0 = \{\sqrt{2}\} = \sqrt{2} - 1;$$

À l'étape suivante, on a donc :

$$a_1 = \left\lfloor \frac{1}{\sqrt{2} - 1} \right\rfloor = \left\lfloor \sqrt{2} + 1 \right\rfloor = 2$$

et

$$b_1 = \frac{1}{\sqrt{2} - 1} - 2 = \sqrt{2} - 1.$$

Comme on a trouvé la même partie décimale qu'à l'étape précédente, la suite des calculs se déroulera de la même façon, et par conséquent, pour tout $n \ge 1$, $a_n = 2$. Par conséquent,

$$\sqrt{2} = 1 + \frac{1}{2 + \frac{1}{2 + \frac{1}{2 + \dots}}}.$$

On observe bien que le développement obtenu est ultimement périodique (de période 1), conformément au résultat qu'on cherche à établir dans cette partie. Nous n'aurons pas à nous servir de ce développement, il était juste là en guise d'exemple.

- 3. Pour commencer, remarquons que puisque le développement de x est périodique, il est infini, donc x est irrationnel.
 - On utilise le lemme suivant : on montre par récurrence sur $m \in \mathbb{N}$ la propriété suivante : pour tout $y \in \mathbb{R}_+^*$ il existe des entiers a,b, c et d tels que $c > 0, d \ge 0, ad bc \ne 0$, et

$$[a_0,\ldots,a_m]\left(\frac{1}{y}\right) = \frac{ay+b}{cy+d}.$$

* Soit m = 0. Alors

$$[a_0, \dots, a_m]$$
 $\left(\frac{1}{y}\right) = a_0 + \frac{1}{y} = \frac{a_0y + 1}{1 \cdot y + 0}.$

De plus, $a_0 \times 0 - 1 \times 1 \neq 0$.

* On suppose la propriété vérifiée à un rang m. On a alors

$$[a_0,\ldots,a_{m+1}]\left(\frac{1}{y}\right) = [a_0,\ldots,a_m]\left(\frac{1}{a_m + \frac{1}{y}}\right).$$

Par hypothèse de récurrence, utilisée avec $y' = a_m + \frac{1}{y} > 0$, il existe des entiers a, b, c, d vérifiant c > 0 et $d \ge 0$.

$$[a_0, \dots, a_{m+1}] \left(\frac{1}{y}\right) = \frac{a\left(a_m + \frac{1}{y}\right) + b}{c\left(a_m + \frac{1}{y}\right) + d}$$
$$= \frac{(aa_m + b)y + a}{(ca_m + d)y + c}$$

On pose $a' = aa_m + b$, b' = a, $c' = ca_m + d$, d' = c. Comme c > 0, $d \ge 0$ et $a_m > 0$, on en déduit que c' > 0 et $d' \ge 0$. Ainsi, on a bien montré la propriété au rang m + 1.

• On suppose dans un premier temps que le développement de x est T périodique depuis le rang initial. On a donc pour tout $n \in \mathbb{N}$, $a_{n+T} = a_n$. On peut donc écrire :

$$x = [a_0, \dots, a_n, \dots] = [a_0, \dots, a_{T-1}] \left(\frac{1}{x}\right).$$

Il existe donc des entiers a, b, c et d, avec $c \neq 0$, tels que

$$x = \frac{ax+b}{cx+d}$$
 soit: $cx^2 + (d-a)x - b = 0$.

Ainsi, x est bien racine d'un polynôme du seconnd degré à coefficients entiers.

On en déduit que x est quadratique .

• On montre maintenant par récurrence sur n_0 que si (a_n) est périodique à partir du rang n_0 , alors $[(a_n)]$ est quadratique. L'initialisation, pour $n_0 = 0$, vient d'être faite. Soit $n_0 \in \mathbb{N}$, on suppose que cette propriuété est vérifiée pour toutes les suites de Z_{∞} périodiques à partir du rang n_0 . Soit (a_n) une suite de Z_{∞} périodique à partir du rang $n_0 + 1$. Soit pour tout $n \in \mathbb{N}$, $a'_n = a_{n+1}$. Alors (a'_n) est périodique à partir du rang n_0 , et donc, par hypothèse de récurrence, $y = [(a'_n)] = [a_1, \ldots, a_n, \ldots]$ est quadratique. Or,

$$x = [a_0, \dots, a_n, \dots] = a_0 + \frac{1}{[a_1, \dots, a_n, \dots]} = a_0 + \frac{1}{y}.$$

Comme y est quadratique, il existe un polynôme de degré 2 à coefficients entiers A, B et C tels que

$$Ay^2 + By + C = 0,$$

avec $A \neq 0$. On a donc

$$\frac{A}{(x-a_0)^2} + \frac{B}{(x-a_0)} + C = 0.$$

En multipliant par $(x-a_0)^2$, il vient

$$A + B(x - x_0) + C(x - x_0)^2 = 0.$$

Or, $C \neq 0$. En effet, si C = 0, y serait racine de $Ay^2 + By = y(Ay + B)$ et serait donc rationnel, donc non quadratique. On en déduit que $C \neq 0$ et que x est racine d'un polynôme de degré 2. Comme on a déjà justifié l'irrationnalité, x est quadratique.

• Ainsi, d'après le principe de récurrence :

si le développement de x est ultimement périodique, alors x est quadratique

- 4. Réciproquement, soit x algébrique de degré 2 et (P_0) comme défini dans l'énoncé.
 - (a) On définit (a_n) et (b_n) comme dans la partie III, et les P_n comme définis dans l'énoncé. En vertu de la partie III, il suffit de montrer que pour tout $n \in \mathbb{N}$, $\frac{1}{b_n}$ est une racine de P_{n+1} .

• On a $b_0 = x - a_0$, et x est racine de P_1 , donc

$$0 = E_1(a_0 + b_0)^2 - 2\varepsilon_0(a_0 + b_0) - E_0$$

= $E_1b_0^2 + (-2\varepsilon_0 + 2a_0E_1)b_0 - (E_0 - E_1a_0^2 + 2\varepsilon_0a_0)$
= $E_1b_0^2 + 2\varepsilon_1b_0 - E_2$.

En divisant par $-b_0^2$, il vient :

$$E_2 \cdot \frac{1}{b_0^2} - 2\varepsilon_1 \cdot \frac{1}{b_0} - E_1 = 0.$$

Ainsi, $\frac{1}{h_0}$ est une racine de P_1 .

• On suppose que, pour $n \in \mathbb{N}^*$ donné, $\frac{1}{b_{n-1}}$ est une racine de P_n . Alors, de la même façon, on exprime

$$\frac{1}{b_{n-1}} = a_n + b_n,$$

et donc

$$0 = E_{n+1}(a_n + b_n)^2 - 2\varepsilon_n(a_n + b_n) - E_n$$

= $E_{n+1}b_n^2 + (-2\varepsilon_n + 2a_nE_{n+1})b_n - (E_n - E_{n+1}a_n^2 + 2\varepsilon_na_n)$
= $E_{n+1}b_n^2 + 2\varepsilon_{n+1}b_n - E_{n+2}$.

et comme avant en divisant par $-b_n^2$, $\frac{1}{b_n}$ est une racine de P_{n+1} . Remarquons que P_{n+1} se relie facilement à de P_n : le calcul ci-dessus montre que pour tout $y \neq 0$

$$-\frac{1}{y^2}P_n(a_n+y) = -\frac{1}{y^2}(E_{n+1}y^2 + 2\varepsilon_{n+1}y - E_{n+2}) = P_{n+1}\left(\frac{1}{y}\right) \quad \text{donc:} \quad \boxed{P_{n+1}(y) = -y^2P_n\left(a_n + \frac{1}{y}\right)}$$

- Ainsi, d'après le principe de récurrence, pour tout n, $\frac{1}{b_n}$ est une racine de P_{n+1} , et donc a_{n+1} étant d'après la partie III la partie entière de $\frac{1}{b_n}$, a_{n+1} est la partie entière d'une racine de P_{n+1} . Cela reste vrai pour $a_0 = |x|$ aussi, puisque x est une racine de P_0 .
- (b) C'est une simple vérification. Par une récurrence immédiate, il suffit de prouver que pour tout $n \in \mathbb{N}$, $\Delta_{n+1} = \Delta_n$. Or,

$$\Delta_{n+1} = 4\varepsilon_{n+1}^2 + 4E_{n+1}E_{n+2}$$

$$= 4(a_nE_{n+1} - \varepsilon_n)^2 + 4E_{n+1}(E_n + 2\varepsilon_na_n - E_{n+1}a_n^2)$$

$$= 4\varepsilon_n^2 + 4E_nE_{n+1}$$

$$= \Delta_n.$$

Donc pour tout $n \in \mathbb{N}$, $\Delta_n = \Delta_0$

(c) Le calcul du discrimant amène

$$\Delta' = \frac{1}{4}\Delta_n = \varepsilon_n^2 + E_n E_{n+1},$$

de quoi on tire:

$$E_{n+1} = \frac{\Delta' + \varepsilon_n^2}{E_n}$$

- (d) D'après ce qui précède, $\Delta_n = \Delta > 0$, donc P_n admet toujours deux racines distinctes (initialement, on connait l'existence d'une racine de P_0 par définition, et elle ne peut pas être double, sinon x serait rationnel).
 - Notons s_n et t_n ces deux racines, en supposant $s_n < t_n$. Remarquons que nécessairement, $t_n > 1$. En effet, on sait que $\frac{1}{b_{n-1}}$ est racine de P_n . Or, $0 < b_{n-1} < 1$ (partie décimale, non nulle sinon la fraction serait finie). Donc $\frac{1}{b_{n-1}} > 1$.
 - Supposons dans un premier temps que pour tout $n \in \mathbb{N}$, $[s_n] = [t_n]$. Soit y la deuxième racine de P_0 (i.e. celle différente de x), $[(c_n)]$ son développement en fraction continue, et (Q_n) sa suite polynomiale associée comme en 4(a).
 - * On a en particulier $P_0 = Q_0$, et comme s_0 et t_0 ont même partie entière, $a_0 = c_0$.

- * Supposons que pour n donné, $P_n = Q_n$ et $a_n = c_n$. Alors la description de P_{n+1} ne dépendant que de P_n et de a_n , on a $P_{n+1} = Q_{n+1}$. Les deux racines de ce polynôme ont même partie entière. Ainsi, d'après 4(a), $a_{n+1} = c_{n+1}$.
- * Par conséquent, d'après le principe de récurrence, pour tout $n \in \mathbb{N}, a_n = c_n$, donc

$$x = [(a_n)] = [(c_n)] = y,$$

ce qui est une contradiction.

• On en déduit qu'il existe un rang n_1 tel que P_{n_1} admette deux racines $s_{n_1} < t_{n_1}$ telles que $|s_{n_1}| < |t_{n_1}|$. D'après la remarque en fin de question 4(a), on a, pour tout $y \neq 0$,

$$P_{n_1+1}(y) = -y^2 P_{n_1}(a_n + \frac{1}{y}).$$

Ainsi, y est racine de P_{n_1+1} si et seulement si $a_{n_1}+\frac{1}{y}$ est racines de P_{n_1} , donc les deux racines sont

$$\frac{1}{s_{n_1} - a_{n_1}}$$
 et $\frac{1}{t_{n_1} - a_{n_1}}$.

* Si $a_{n_1} = \lfloor s_{n_1} \rfloor < t_{n_1} - 1$, donc $t_{n_1} - a_{n_1} > 1$, donc $\frac{1}{t_{n_1} - a_{n_1}} < 1$.

* Si $a_{n_1} = \lfloor t_{n_1} \rfloor > s_{n_1}$, alors $\frac{1}{s_{n_1} - a_{n_1}} < 0$; Ainsi, dans chacun des deux cas, l'une des racines n'est pas dans]1, $+\infty$ [. Comme on a déjà justifié qu'au moins une des deux racines est dans $]1,+\infty[$, on a bien trouvé un rang $n_0=n_1+1$ tel que P_{n_0} ait une et une seule racine dans $]1, +\infty[$.

(e) Alors $a_{n_0} = \lfloor t_{n_0} \rfloor$ (partie entière de la plus grande des deux racines, l'autre étant plus petite que 1). Par le même argument que ci-dessus (mais on est cette fois toujours dans le deuxième cas), la plus petite des racines de P_{n_0+1} sera négative. Ainsi, $P_{n_0}+1$ admet une unique racine positive (et qui est en fait supérieure à 1). Cet argument peut être itéré. Autrement dit, par une récurrence basée sur le même principe, pour tout $n > n_0$, P_n admet une et une seule racine positive.

Or, le produit des racines est $\frac{-E_n}{E_{n+1}}$, donc pour tout $n > n_0$, ce produit devant être négatif, E_n et E_{n+1} sont de même signe (strictement), donc $E_n E_{n+1} > 0$.

(f) Or, pour $n > n_0 + 1$,

$$0 \le \varepsilon_n^2 = \Delta' - E_n E_{n+1} < \Delta', \quad \text{donc:} \quad |\varepsilon_n| < \sqrt{\Delta'}$$

De même,

$$E_n E_{n-1} < \Delta' - \varepsilon_{n-1}^2 < \Delta',$$

donc, E_{n-1} et E_n étant de même signe,

$$|E_n| < \frac{\Delta'}{|E_{n-1}|}$$
 donc: $|E_n| < \Delta'$

puisque E_{n-1} est un entier non nul.

- (g) Ainsi, pour $n > n_0 + 1$, le nombre de valeurs possibles de ε_n est majoré par $2\sqrt{\Delta'}$ (car les ε_n doivent être entiers), et le nombre de valeurs possibles de E_n est majoré par $2\Delta'$ (et même par Δ' , car les E_n sont tous de même signe). Ainsi, il y a un nombre fini majoré par $4(\Delta')^{\frac{3}{2}}$ de valeurs possibles du couple (E_n, ε_n)
- (h) D'après le principe des tiroirs, il existe donc $n_2 > n_0 + 1$ et T > 0 tels que $(E_{n_2+T}, \varepsilon_{n_2+T}) = (E_{n_2}, \varepsilon_{n_2})$. Montrons par récurrence sur n que pour tout $n \ge n_2$,

$$(E_{n+T}, \varepsilon_{n+T}) = (E_n, \varepsilon_n).$$

L'initialisation est la définition de n_2 . Soit $n \ge n_2$, et supposons que

$$(E_{n+T}, \varepsilon_{n+T}) = (E_n, \varepsilon_n).$$

Puisque

$$E_{n+1} = \frac{\Delta - \varepsilon_n^2}{E_n},$$

le couple (E_n, ε_n) détermine entièrement E_{n+1} et donc

$$E_{n+1} = E_{n+1+T}$$

Mais alors, $P_n = P_{n+T}$, et comme ce polynôme admet une unique racine supérieure à 1, $a_n = a_{n+T}$. On déduit alors de la relation définissant ε_n que $\varepsilon_{n+1} = \varepsilon_{n+T+1}$. Ainsi,

$$(E_{n+1}, \varepsilon_{n+1}) = (E_{n+1+T}, \varepsilon_{n+1+T}).$$

D'après le principe de récurrence, la suite $((E_n, \varepsilon_n))_{n \geq n_2}$ est périodique, donc la suite $(P_n)_{n \geq n_2}$ est périodique, donc la suite $(a_n)_{n \geq n_2}$ est périodique $(P_n)_{n \geq n_2}$ est périodique $(P_n)_{n \geq n_2}$ est périodique de l'unicité de la racine supérieure à 1).

Par conséquent x admet un développement en fraction continue ultimement périodique.