Cours de mathématiques Partie II – Analyse MP2I

Alain TROESCH

Version du:

4 juillet 2024

8	Dér	ivatior	n de fonctions	5
	I	Rappe	els sur les limites	5
		I.1	Limites : point de vue métrique	6
		I.2	Limites : point de vue topologique	8
		I.3	Unicité de la limite	10
		I.4	Limites à droite et à gauche	11
		I.5	Propriétés des limites	12
		I.6	Limites de fonctions à valeurs dans $\mathbb C$	12
		I.7	Continuité	13
	II	Dériva	tion	14
		II.1	Dérivation et tangente	14
		II.2	Dérivées à droite et à gauche	16
		II.3	Fonctions de classe \mathcal{C}^n	17
		II.4	Théorème des accroissements finis, fonctions lipschitziennes	18
		II.5	Théorèmes de prolongement	19
		II.6	Règles de dérivation	20
		II.7	Stabilité des propriétés de régularité	24
		II.8	Dérivations de fonctions réelles à valeurs dans $\mathbb C$	26
	III	ons convexes	27	
		III.1	Notion de convexité	27
		III.2	Étude des pentes d'une fonction convexe	28
		III.3	Étude de la dérivabilité des fonctions convexes	28
		III.4	Caractérisation de la convexité pour les fonctions \mathcal{D}^1 ou \mathcal{D}^2	29
	IV	Étude	d'une fonction	30
		IV.1	Graphe	30
		IV.2	Symétries d'une fonction	31
		IV.3	Monotonie	32
		IV.4	Variations des fonctions, extremum	33
		IV.5	Comportement asymptotique	34
		IV.6	Convexité	35
9	Les	foncti	ons usuelles	37
	I	Prérec	quis	37
	II	Expon	nentielle, logarithme, puissances	38
		II.1	Logarithme	38

		II.2	Exponentielle réelle	39
		II.3	Fonctions puissances	40
		II.4	Exponentielle et logarithme de base b	42
		II.5	Croissances comparées	42
	III	Foncti	ons trigonométriques	43
		III.1	Sinus	14
		III.2	Cosinus	44
		III.3	Tangente	45
	IV	Récipr	oques des fonctions trigonométriques	45
		IV.1	Arctangente	45
		IV.2	Arcsinus	47
		IV.3	Arccosinus	48
	V	Foncti	ons hyperboliques	50
	VI	Récipr	oques des fonctions hyperboliques (HP)	52
	VII	Tablea	u des dérivées des fonctions usuelles	52
		cul inte		55
-	I			55
		I.1		55
		I.2	1	59
-	II			31
		II.1		32
		II.2		34
		II.3	Ü	64
-	III	Rapide	e introduction aux intégrales impropres	₃₅
11	Éau	ations	différentielles linéaires 6	67
	I			67
	II	-		68
		II.1		38
		II.2		68
		II.3	- · · · · · · · · · · · · · · · · · · ·	69
		II.4		70
		II.5	·	70
		II.6	Résolution des EDL d'ordre 1 à coefficients constants	70
	III	Résolu	tion des EDL d'ordre 2 à coefficients constants	71
		III.1	Position du problème	71
		III.2	Résolution de l'équation homogène	71
		III.3	Solution générale du système non homogène	73
		III.4	Problème de Cauchy	74
			1	75
-	I			75
		I.1		75
		I.2	•	78
		I.3		79
-	II	-	· · · · · · · · · · · · · · · · · · ·	30
		II.1	•	30
		II.2	•	30
		II.3	<u> </u>	33
		II.4		35
		II.5	Suites adjacentes	36

	II.6	Digression sur la construction de \mathbb{R}			
	II.7	Caractérisations séquentielles			
III	Suites	s extraites			
	III.1	Définitions			
	III.2	Suites extraites et convergence			
	III.3	Théorème de Bolzano-Weierstrass			
IV	Étude	e de suites particulières			
	IV.1	Suites définies par une récurrence affine			
	IV.2	Suites définies par une relation linéaire d'ordre k			
	IV.3	Suites définies par une récurrence $u_{n+1} = f(u_n) \dots 97$			
13 Pro	priété	des fonctions \mathcal{C}^0 ou \mathcal{D}^1 sur un intervalle			
I	Fonct	ions continues sur un intervalle			
	I.1	Fonctions continues et continues par morceaux			
	I.2	Théorème des valeurs intermédiaires (TVI)			
	I.3	Continuité uniforme			
	I.4	Extrema des fonctions continues sur un intervalle fermé borné			
	I.5	Autour des fonctions monotones – Théorème de la bijection			
II	Fonct	ions dérivables sur un intervalle			
	II.1	Théorème de Rolle			
	II.2	Théorème des accroissements finis			
	II.3	Extension aux fonctions dérivables à valeurs dans \mathbb{C}			
	-	ymptotique 109			
Ι		nation, négligeabilité			
	I.1	Cas des suites			
	I.2	Propriétés des o et O			
	I.3	Extension au cas des fonctions			
II	-	alents			
	II.1	Cas des suites			
	II.2	Propriétés des équivalents			
	II.3	Cas des fonctions			
	II.4	Équivalents classiques			
	II.5	Problème de la somme et de la composition des équivalents			
15 Dé	velopp	ements limités 121			
I	Form	ule de Taylor-Young et DL des fonctions usuelles			
	I.1	Développement de Taylor			
	I.2	Formule de Taylor-Young			
	I.3	Développement limité des fonctions usuelles			
II	Génér	ralités sur les développements limités			
	II.1	Définition, exemples			
	II.2	Restriction			
	II.3	Forme normalisée et partie principale			
III	Opéra	ations sur les développements limités			
	III.1	Somme de DL			
	III.2	Produit de DL			
	III.3	Composition de DL			
	III.4	Quotient de DL			
	III.5	Primitivation d'un DL			
	III.6	Dérivation			
IV		oppements asymptotiques			
	Developpements asymptotiques				

7	V Applications			35
		V.1	Courbes polynomiales asymptotes à une courbe	35
		V.2	Extréma	35
,	VI	Dévelo	ppements limités des fonctions usuelles	36
16	Séri	es nun	nériques 13	7
	I		de série et de convergence	37
		I.1	Définitions	37
		I.2	Propriétés liées à la convergence	39
]	II	Séries	à termes positifs	10
		II.1	Comparaisons entre séries à termes positifs	
		II.2	Convergence absolue et semi-convergence	
		II.3	D'autres théorèmes de comparaison	
		II.4	Comparaison entre une série et une intégrale	
		II.5	Séries de référence	
		II.6	Comparaison avec une série de Riemann	
		II.7	Comparaison avec une série géométrique	
1	III		de la semi-convergence	
		III.1	Séries alternées	
		III.2	Critère d'Abel	
	IV		es sommables	
-	1 V	IV.1	Familles sommables de nombres réels positifs	
		IV.1 IV.2	Famille sommable de nombres complexes	
,	V		r de la série exponentielle	
	V	V.1	La série exponentielle	
		V.1 V.2	Lien avec la fonction exponentielle	
,	VI		e des séries géométriques	
17	Tooká		n 15	7
	inte I	gratio	ale des fonctions en escalier	
	1	Integra	Notion de subdivision d'un intervalle	_
		I.1 I.2	Fonctions en escalier	
		I.3 I.4	Intégrale d'une fonction en escalier	
,	TT		•	
	II		ruction de l'intégrale de Riemann	
		II.1	Fonctions intégrables	
		II.2	Exemples importants de fonctions intégrables	
		II.3	Propriétés de l'intégrale	
		II.4	Intégrales des fonctions continues par morceaux	
		II.5	Sommes de Riemann	
		II.6	Extension des résultats aux fonctions à valeurs dans \mathbb{C}	
	III	Primit	ives et intégration	18
18	Fone		de plusieurs variables 16	9
]	I	Limite	s et continuité d'une fonction de n variables réelles $\dots \dots \dots$	
		I.1	Limites d'une fonction de n variables	59
		I.2	Continuité	′1
]	II	Rudim	ents de calcul différentiel	1
		II.1	Dérivées partielles	′2
		II.2	Développements limités des fonctions de deux variables	′4
		II.3	Dérivation partielle de composées	′5

Dérivation de fonctions

Il faut entendre par dernier quotient des quantités évanouissantes le quotient qu'ont entre elles ces quantités qui diminuent, non pas avant de s'évanouir, ni après qu'elles se sont évanouies, mais au moment même où elles s'évanouissent.

(Isaac Newton)

Il faut donc « savoir calculer » avant que de prétendre accéder à l'Analyse moderne.

(Jean Dieudonné)

Introduction

Note Historique 8.0.1

Longtemps, les mathématiques se sont développées au service des autres sciences ; d'ailleurs, la séparation des différentes sciences est tardive, et nombreux ont été les mathématiciens à avoir également été des physiciens de renommée, comme Newton par exemple. Les mathématiques ont d'abord été vues comme un outil :

- $\bullet\,$ au service de la mécanique et de l'ingéniérie (Archimède)
- au service de l'astronomie (géométrie grecque, Ptolémée, écoles indienne et arabe)
- au service de toute étude nécessitant d'être chiffrée pour obtenir des ordres de grandeurs.

Du dernier point découle l'importance du développement du calcul numérique (calcul approché, en opposition au calcul algébrique). C'est ce point de vue qui est à la base des procédés d'approximation (méthode de Newton de recherche d'un zéro, méthodes approchées de calcul d'intégrales), aboutissant notamment à la notion de convergence (qui donne la validité de l'approximation à l'infini)

Ainsi, l'utilisation de l'outil est souvent à la base de sa définition, et a souvent précédé sa théorisation : les mathématiques ont évolué de façon empirique.

Dans ce chapitre nous donnons les outils permettant une étude efficace des fonctions. L'outil essentiel est bien entendu la dérivation, que nous abordons ici d'un point de vue essentiellement pratique : l'objectif est de savoir dériver et étudier de façon efficace des fonctions explicites.

I Rappels sur les limites

Dans tout ce paragraphe, on considère une fonction définie sur un sous-ensemble X de \mathbb{R} . On supposera que X est un intervalle, ou une union finie d'intervalles, et on notera \overline{X} l'intervalle (ou union d'intervalles) fermé correspondant dans $\overline{\mathbb{R}}$ (en incluant les bornes). On étudie la limite de f en un point a de \overline{X} , c'est-à-dire en un point de son domaine ou une borne.

Remarque 8.1.1

Plus généralement, si X est un sous-ensemble quelconque de \mathbb{R} , on peut considérer la limite en un point a de l'adhérence \overline{X} de X, défini comme étant le plus petit fermé contenant X, ou de façon équivalent, l'ensemble des points x pouvant être approchés d'aussi près qu'on veut par des points de X (i.e. tout voisinage de x rencontre X). Comme dans le cas des intervalles, on peut y inclure $+\infty$ si X est non majopré, et $-\infty$ si X est non minoré.

Ainsi,

• pour a réel fini, $a \in \overline{X}$ si et seulement pour tout $\varepsilon > 0$,

$$B(a,\varepsilon) \cap X \neq \emptyset$$
 soit: $]a - \varepsilon, a + \varepsilon [\cap X \neq \emptyset;$

• pour $a=+\infty$, dans le cas où on se place dans $\overline{\mathbb{R}}$, $a\in \overline{X}$ si et seulement si pour tout $b\in\mathbb{R}$, $|b,+\infty|\cap X\neq\varnothing$

Lorsque $a \in \overline{X}$, on dira que a est adhérent à X (dans $\overline{\mathbb{R}}$)

En anticipant un peu la définition des limites de suites, on obtient la caractérisation suivante, affirmant que l'adhérence est l'ensemble de toutes les limites possibles de suites d'éléments de X.

Proposition 8.1.2 (Caractérisation séquentielle de l'adhérence)

Soit $X \subset \mathbb{R}$ (resp. $X \subset \overline{\mathbb{R}}$). Un élément $x \in \mathbb{R}$ (resp. $x \in \overline{\mathbb{R}}$) est dans l'adhérence de X dans \mathbb{R} (resp. dans $\overline{\mathbb{R}}$) si et seulement s'il existe $(x_n)_{n \in \mathbb{N}} \in X^{\mathbb{N}}$ tel que $x_n \longrightarrow x$.

I.1 Limites : point de vue métrique

Définition 8.1.3 (Limites en un point fini)

Soit $a \in \overline{X} \cap \mathbb{R}$.

• Soit $b \in \mathbb{R}$. On dit que f(x) tend vers b lorsque x tend vers a si :

$$\forall \varepsilon > 0, \ \exists \eta > 0, \ \forall x \in X, \ |x - a| \leqslant \eta \Longrightarrow |f(x) - b| \leqslant \varepsilon.$$

• On dit que f(x) tend vers $+\infty$ lorsque x tend vers a (ou bien f admet b comme limite en a) si:

$$\forall A \in \mathbb{R}, \ \exists \eta > 0, \ \forall x \in X, \ |x - a| \leqslant \eta \Longrightarrow f(x) \geqslant A.$$

 \bullet On dit que f(x) tend vers $-\infty$ lorsque x tend vers a si :

$$\forall A \in \mathbb{R}, \ \exists \eta > 0, \ \forall x \in X, \ |x - a| \leqslant \eta \Longrightarrow f(x) \leqslant A.$$

Décortiquons l'expression dans le cas d'une limite finie :

- $\forall \varepsilon > 0$: « Quelle que soit la marge d'erreur ε qu'on se donne, aussi petite soit-elle ... »
- $\exists \eta > 0$: « ... il existe une petite boule de rayon η centrée en a, quitte à prendre η très petit ... »
- $\forall x \in X, |x-a| < \eta \Longrightarrow ... : « ... tel que si x est à la fois dans X et dans cette boule ... »$
- ... $\Longrightarrow |f(x) b| < \varepsilon$: « alors f(x) est proche à ε près de b. »

Autrement dit : « Si $x \in X$ est suffisamment proche de a, alors f(x) est aussi proche qu'on veut de b ».

Remarques 8.1.4

1. L'hypothèse $a \in \overline{X}$ est nécessaire pour pouvoir considérer des points aussi proches qu'on veut de a. On dira que la limite de f est envisageable en a si cette hypothèse est satisfaite (sans considération d'existence ou non de la limite), et qu'elle ne l'est pas si $a \notin \overline{X}$ (terminologie personnelle)

- 2. Dans le cas fini, l'inégalité est d'autant plus contraignante que ε est petit. On peut se contenter d'étudier le cas de valeurs de ε inférieures à une valeur ε_0 donnée.
- 3. De même, dans le cas d'une limite $+\infty$, la définition trouve sa pertinence lorsque A devient grand (vers $+\infty$) et dans le cas d'une limite $-\infty$, lorsque A devient petit (vers $-\infty$).

Proposition 8.1.5

On peut remplacer une ou plusieurs des inégalités larges $|x-a| \le \eta$ et $|f(x)-b| \le \varepsilon$ par des inégalités strictes, cela donne une définition équivalente

Le quantificateur universel sur ε nous assure que l'on peut aussi remplacer ε par $\varepsilon/2$. On déduit alors l'équivalence de la chaîne d'inclusions :

$$\overline{B}(b,\frac{\varepsilon}{2})\subset B(b,\varepsilon)\subset \overline{B}(b,\varepsilon)$$

et des inclusions similaires avec a et $\frac{\eta}{2}$ (il sera alors peut-être nécessaire de considérer comme valeur de sortie $\frac{\eta}{2}$ et non η , ce qui nous donne aussi la validité de notre quantification existentielle).

Proposition 8.1.6 (Limite en un point du domaine)

Si $a \in X$, et si f(x) admet une limite en a, alors cette limite est nécessairement égale à f(a).

Soit ℓ est la limite de f en a. Puisque a vérifie toujours $|a-a| \leq \eta$, on doit avoir, pour tout $\varepsilon > 0$, $|f(a) - \ell| \leq \varepsilon$.

La définition ci-dessus se généralise à tout espace métrique :

Définition 8.1.7

Soit (E,d) et (F,d') deux espaces métriques, et $X \subset E$. Soit $f: X \to F$. Comme dans le cas de \mathbb{R} , on peut considérer l'adhérence \overline{X} de X dans E. Soit $a \in \overline{X}$. et $b \in F$. On dit que f admet une limite b en a si :

$$\forall \varepsilon > 0, \ \exists \eta > 0, \ \forall x \in X, \ d(x, a) < \eta \Longrightarrow d'(f(x), b) < \varepsilon.$$

Les propriétés ci-dessus (gestion des inégalités strictes ou larges, limites en un point du domaine) sont également valables dans ce cadre.

Le cas spécifique de \mathbb{R} correspond à cette définition plus générale, pour la distance définie par d(x,y) = |y-x|.

Dans le cas de \mathbb{R} , on peut également définir des limites en des points infinis, ou des limites de valeur infinie, débordant ainsi un peu du cadre métrique. La longueur de ces définitions est due au nombre de cas à étudier. Dans toutes ces définitions également, on peut remplacer les inégalités larges par des inégalités strictes. La seule inégalité qu'on n'a pas le droit de modifier est $\varepsilon > 0$.

Définition 8.1.8 (Limite en $+\infty$)

On suppose que $+\infty$ est adhérent à X (i.e. X est non majoré).

• Soit $b \in \mathbb{R}$. On dit que f(x) tend vers b lorsque x tend vers $+\infty$ si:

$$\forall \varepsilon > 0, \ \exists B \in \mathbb{R}, \ \forall x \in X, \ x \geqslant B \Longrightarrow |f(x) - b| \leqslant \varepsilon.$$

• On dit que f(x) tend vers $+\infty$ lorsque x tend vers $+\infty$ si :

$$\forall A \in \mathbb{R}, \exists B \in \mathbb{R}, \forall x \in X, x \geqslant B \Longrightarrow f(x) \geqslant A.$$

• On dit que f(x) tend vers $-\infty$ lorsque x tend vers $+\infty$ si :

$$\forall A \in \mathbb{R}, \ \exists B \in \mathbb{R}, \ \forall x \in X, \ x \geqslant B \Longrightarrow f(x) \leqslant A.$$

Définition 8.1.9 (Limite en $-\infty$)

On suppose que $-\infty$ est adhérent à X.

• Soit $b \in \mathbb{R}$. On dit que f(x) tend vers b lorsque x tend vers $-\infty$ si:

$$\forall \varepsilon > 0, \ \exists B \in \mathbb{R}, \ \forall x \in X, \ x \leqslant B \Longrightarrow |f(x) - b| \leqslant \varepsilon.$$

• On dit que f(x) tend vers $+\infty$ lorsque x tend vers $-\infty$ si :

$$\forall A \in \mathbb{R}, \ \exists B \in \mathbb{R}, \ \forall x \in X, \ x \leqslant B \Longrightarrow f(x) \geqslant A.$$

• On dit que f(x) tend vers $-\infty$ lorsque x tend vers $-\infty$ si :

$$\forall A \in \mathbb{R}, \ \exists B \in \mathbb{R}, \ \forall x \in X, \ x \leqslant B \Longrightarrow f(x) \leqslant A.$$

Remarque 8.1.10

- 1. Lorsqu'on prend $X = \mathbb{N}$ et $a = +\infty$, on trouve la définition de la limite des suites qui n'est qu'un cas particulier de la définition générale :
 - $u_n \to \ell \in \mathbb{R} \iff \forall \varepsilon > 0, \ \exists N \in \mathbb{N}, \ \forall n \geqslant N, \ |u_n \ell| < \varepsilon.$
 - $u_n \to \dot{+}\infty \iff \forall A \in \mathbb{R}, \ \exists N \in \mathbb{N}, \ \forall n \geqslant N, \ u_n \geqslant A$
- 2. Comme plus haut, les inégalités (sauf $\varepsilon > 0$) peuvent être indifféremment strictes ou larges.

Comme on peut le constater, la distinction entre un point fini et les deux infinis, à faire à la source et à l'arrivée, amène à distinguer 9 cas différents dans la définition des limites. Pour les études pratiques, ce n'est pas gênant : il suffit de considérer le cas qui nous concerne. Pour des études plus théorique, notamment pour établir des propriétés générales, il peut être plus commode d'avoir une description plus uniforme, évitant d'avoir à distinguer entre un grand nombre de cas.

I.2 Limites : point de vue topologique

On peut donner une définition globale à l'aide de la notion de voisinage. On rappelle que si E est un espace métrique, un sous-ensemble V de E est un voisinage de $b \in E$ si et seulement s'il existe un rayon $\varepsilon > 0$ tel que la boule $B(b, \varepsilon)$ soit entièrement incluse dans V.

Dans $\overline{\mathbb{R}}$, on peut aussi disposer de la notion voisinage de $+\infty$:

Définition 8.1.11 (Voisinage de $+\infty$)

On dit que $V \subset \mathbb{R}$ est un voisinage de $+\infty$ s'il existe $a \in \mathbb{R}$ tel que $]a, +\infty[\subset V]$.

Notation 8.1.12

Pour $b \in \overline{\mathbb{R}}$, on note $\mathcal{V}(b)$ l'ensemble des voisinages de b.

La notion de voisinage (pour un point fini) est une notion topologique : elle se décrit à l'aide des ouverts de \mathbb{R} :

Proposition 8.1.13 (Définition topologique des voisinages)

Soit V un sous-ensemble de \mathbb{R} et $b \in \mathbb{R}$. Les psse :

- (i) V est un voisinage de b;
- (ii) Il existe U un ouvert de \mathbb{R} tel que $b \in U \subset V$.

Cette propriété permet de définir la notion de voisinage dans le contexte plus général d'un « espace topologique » E, dans lequel on ne dispose pas d'une distance, mais seulement de la donnée des ensembles ouverts (l'ensemble des ouverts est alors appelé topologie de E).

Pour cette raison, les caractérisations en terme de voisinages sont souvent qualifiées de caractérisations topologiques, en opposition aux caractérisations métriques utilisant la distance.

Lemme 8.1.14 (intersection de voisinages)

Une intersection d'un nombre fini de voisinages de a est encore un voisinage de a.

La notion de limite relie la métrique de l'espace de départ (lorsqu'on considère x tel que $|x-a| < \eta$) et la métrique de l'espace d'arrivée (lorsqu'on impose $|f(x)-\ell| < \varepsilon$). On peut remplacer l'un ou l'autre, ou les deux, de ces deux points de vue métriques par un point de vue topologique.

On obtient de la sorte des définitions équivalentes de la limite d'une fonction en un point.

Théorème 8.1.15 (Caractérisation des limites par voisinages)

Soit $a \in \overline{X}$ (fini ou infini) et $b \in \overline{\mathbb{R}}$. Les propositions suivantes sont équivalentes :

- (i) (m'etrique/m'etrique) f admet une limite b lorsque x tend vers a
- (ii) (métrique/topologique)
 - 1. si a est fini: $\forall W \in \mathcal{V}(b), \exists \eta > 0, \forall x \in X, |x a| < \eta \Longrightarrow f(x) \in W$
 - 2. $si\ a = +\infty : \forall W \in \mathcal{V}(b), \ \exists B \in \mathbb{R}, \ \forall x \in X, \ x > B \Longrightarrow f(x) \in W$
- $(iii) \ (topologique/m\'etrique)$
 - 1. si b est fini: $\forall \varepsilon > 0, \ \exists V \in \mathcal{V}(a), \forall x \in X, \ x \in V \Longrightarrow |f(x) b| < \varepsilon$
 - 2. $si\ b = +\infty : \forall A \in \mathbb{R}, \ \exists V \in \mathcal{V}(a), \forall x \in X, \ x \in V \Longrightarrow f(x) > A$
- (iv) (topologique/topologique) $\forall W \in \mathcal{V}(b), \exists V \in \mathcal{V}(a), f(V) \subset W.$

On remarquera que par définition, si V n'est pas inclus dans le comaine de définition X, $f(V) = f(V \cap X)$. Ici, comme plus haut, les inégalités sont indifféremment strictes ou larges, à part $\varepsilon > 0$.

Ce passage du métrique au topologique consiste donc simplement à remplacer les boules centrées en un point a par des voisinages, notion plus floue et moins mesurée.

Remarquer que $|x - a| < \varepsilon$ équivaut à $x \in B(a, \varepsilon)$

Au départ, on passe alors du cas topologique au cas métrique en remarquant que tout voisinage de a contient une boule $B(a,\varepsilon)$, et du cas métrique au cas topologique en remarquant qu'une boule $B(a,\varepsilon)$ est un voisinage de a. Quelle différence à l'arrivée?

Remarque 8.1.16

Cette caractérisation est aussi valable dans le cadre plus général d'un espace métrique (et s'énonce un peu plus simplement, puisqu'on n'a pas à y considérer les cas infinis).

Nous dirons qu'une fonction f admet une propriété \mathcal{P} au voisinage d'un point $a \in \overline{X}$, s'il existe un voisinage V de a dans \mathbb{R} (au sens étendu ci-dessus pour a infini) tel que la propriété \mathcal{P} soit vérifiée par f sur l'ensemble $V \cap X$.

La notion de limite permet alors de « contrôler » une fonction au voisinage d'un point. Ainsi, on obtient par exemple :

Proposition 8.1.17

Soit f une fonction admettant une limite finie en un point a de \overline{X} . Alors, f est bornée au voisinage de a.

La définition de la limite par ε donne un encadrement local de f. Comment s'arranger pour ne pas avoir besoin de distinguer les cas de limites en un point fini ou en un point infini?

Définition 8.1.18 (Coïncidence de deux fonctions)

Soit f et g deux fonctions définies sur X et Y et a tel que $a \in \overline{X}$ et $a \in \overline{Y}$. On dit que f et g coincident au voisinage de a si et seulement s'il existe un voisinage V de a dans \mathbb{R} tel que $X \cap V = Y \cap V$ et que

$$\forall x \in X \cap V, \quad f(x) = g(x).$$

Proposition 8.1.19 (Comparaison des limites de deux fonctions coïncidant au vois. de a)

Soit f et g deux fonctions coïncidant au voisinage d'un point a. Alors, si f admet une limite (finie ou infinie) en a, alors g aussi, et

$$\lim_{x \to a} f(x) = \lim_{x \to a} g(x).$$

Par voisinage pour ne pas avoir de discussion, en remarquant que si V_0 est un voisinage de a sur lequel f et g coïncide, alors pour tout voisinage U de a, $U \cap V_0$ est un voisinage de a, sur lequel f et g coïncident.

I.3 Unicité de la limite

L'unicité de la limite d'une fonction provient d'une propriété topologique de $\mathbb R$:

Lemme 8.1.20 (Lemme de séparation)

Soit $(x,y) \in \mathbb{R}^2$ tels que $x \neq y$. Alors il existe des voisinages V de x et W de y tels que $V \cap W = \emptyset$. Si de plus x < y, on peut choisir V et W tels que V < W (dans le sens où pour tout $v \in V$ et tout $w \in W$, v < w.

Il suffit de montrer directement la seconde assertion. Dans le cas x et y réels, considerer $B(x, \frac{d}{3})$ et $B(y, \frac{d}{3})$, où d est Adapter dans le cas d'un ou deux infinis.

Théorème 8.1.21 (Unicité de la limite, cas réel)

Soit $a \in \overline{X}$ et f une fonction réelle. Sous réserve d'existence, la limite de f(x) lorsque x tend vers a est unique.

Par l'absurde, en considérant $\ell < \ell'$ deux limites, et en utilisant la définition topologique avec deux voisinages bien choisis, l'un de ℓ et l'autre de ℓ' .

Notation 8.1.22

En cas d'existence de la limite en a, cette notation étant maintenant non ambiguë, on note $\lim_{x\to a} f(x)$ LA limite de f(x) lorsque x tend vers a.

I.4 Limites à droite et à gauche

Notation 8.1.23

Soit f définie sur X. Soit Y un intervalle (ou une union d'intervalles, ou plus généralement un sousensemble quelconque) tel que $a \in \overline{X \cap Y}$. Si la limite (finie ou infinie) en a de la restriction $f_{|X \cap Y|}$ existe, on utilise la notation suivante :

$$\lim_{x \to a} f_{|X \cap Y}(x) = \lim_{\substack{x \to a \\ x \in Y}} f(x).$$

Dans cette notation, il est sous-entendu que x doit bien sûr aussi être élément du domaine de définition X de f.

Définition 8.1.24 (Limite à gauche, limite à droite)

• La limite à gauche correspond au cas où $Y =]-\infty, a[$; on utilise l'une des notations suivantes :

$$\lim_{\substack{x \to a \\ x \in]-\infty, a[}} f(x) = \lim_{\substack{x \to a \\ x < a}} f(x) = \lim_{\substack{x \to a^-}} f(x) = f(a-0).$$

• La limite à droite correspond au cas où $Y =]a, +\infty[$; on utilise l'une des notations suivantes :

$$\lim_{\substack{x \to a \\ x \in]a, +\infty[}} f(x) = \lim_{\substack{x \to a \\ x > a}} f(x) = \lim_{x \to a^+} f(x) = f(a+0).$$

Remarque 8.1.25

Remarquez que dans la définition des limites à gauche et à droite, le point a est exclus de Y.

Exemples 8.1.26

- 1. $f: x \mapsto \frac{x}{|x|} \text{ en } a = 0;$
- 2. $f: x \mapsto \frac{1}{x} \text{ en } a = 0;$
- 3. $f: x \mapsto |x|$ en $a \in \mathbb{Z}$.

Théorème 8.1.27 (Caractérisation de la limite par limites à gauche et à droite)

Soit $a \in \overline{X}$. La fonction f admet une limite ℓ en a si et seulement si, parmi les quantités f(a-0), f(a) et f(a+0), celles qui sont envisageables existent et sont égales à ℓ .

Remarquez que dans le sens réciproque, cela n'a d'intérêt que si au moins 2 quantités sont envisageables, ce qui exclut $a = \pm \infty$. On pourra donc travailler métriquement au départ. On peut étudier le 3 où les 3 limites sont envisageables, qui est suffisamment représentatif, les 3 autres cas s'adaptent facilement.

Théorème 8.1.28 (Régularité des fonctions monotones)

Une fonction monotone admet des limites à gauche et à droite en tout point en lequel c'est envisageable (y compris les infinis, s'ils sont adhérents au domaine). Par ailleurs, ces limites sont finies sauf éventuellement les limites aux deux bornes (inférieure et supérieure) du domaine.

Travailler métriquement, pour exploiter plus facilement la monotonie. Pour une fonction croissante, on pourra considérer $\sup\{f(x), x < a\}$.

I.5 Propriétés des limites

Pour la suite du chapitre, on supposera connues les propriétés suivantes des limites. Ces propriétés seront démontrées ultérieurement :

- Les limites de sommes, produits, quotients, composées, et les formes indéterminées $0 \times \infty$, $\frac{0}{0}$, $\frac{\infty}{\infty}$, $\infty \infty$, 1^{∞} , 0^{0} , ∞^{0} .
- La conservation des inégalités LARGES par passage à la limite.
- Le théorème d'encadrement, ou théorème des gendarmes, aussi appelé plus complètement théorème d'existence de la limite par encadrement, ce qui dit bien quel est le point essentiel de ce théorème.

À ces propriétés, on en rajoute une qu'on démontre tout de suite :

Proposition 8.1.29 (Composition des limites)

Soit f et g deux fonctions et a, b et c des éléments de $\overline{\mathbb{R}}$. Si $\lim_{x\to a} f(x) = b$ et $\lim_{y\to b} g(x) = c$, alors $g\circ f$ admet une limite en a, et

$$\lim_{x \to a} g \circ f(x) = c.$$

Immédiat par caractérisation topologique.

On donne un exemple important d'utilisation du théorème d'encadrement, en vue d'obtenir les limites remarquables du sin et du cos, à partir de leur définition géométrique. Ces limites (notamment la première) ne peuvent pas, (selon le point de vue adopté) se déduire d'un taux d'accroissement via une propriété de dérivation, car nous aurons à nous en servir pour exprimer la dérivée de sin.

Proposition 8.1.30 (Comportement asymptotique de sin et cos au voisinage de 0)

1.
$$\lim_{x \to 0} \frac{\sin(x)}{x} = 1$$
.

$$2. \lim_{x \to 0} \frac{\cos(x) - 1}{x^2} = -\frac{1}{2}.$$

I.6 Limites de fonctions à valeurs dans $\mathbb C$

On considère dans ce paragraphe une fonction $f: X \longrightarrow \mathbb{C}$, où X est un sous-ensemble de \mathbb{R} (la variable est donc réelle ici), et $a \in \overline{X}$.

La définition métrique de la limite étant en fait valable en remplaçant les distances |x-y| dans \mathbb{R} par des distances plus générales d(x,y) dans un espace métrique, on peut définir sans problème de la façon suivante la limite de f à valeurs dans \mathbb{C} , la distance étant définie par le module de la différence. On pourrait même envisager le cas où la variable elle-même est complexe.

Définition 8.1.31 (Limite d'une fonction à valeurs dans \mathbb{C})

Si a est fini, f admet une limite $\ell \in \mathbb{C}$ en a si :

$$\forall \varepsilon > 0, \ \exists \eta > 0, \ \forall x \in X, \ |x - a| \leqslant \eta \Longrightarrow |f(x) - \ell| \leqslant \varepsilon.$$

Vous adaptez bien sûr facilement cette définition au cas où a est infini, ou bien de façon synthétique à l'aide du point de vue topologique à la source.

Le point important est le suivant, affirmant que l'étude des limites d'une fonction à valeurs complexes se ramène à l'étude des limites de deux fonctions à valeurs réelles.

Théorème 8.1.32 (Caractérisation de la limite d'une fonction à valeurs complexes)

Soit $f = f_r + i f_i$, où f_r et f_i sont à valeurs réelles (donc correspondent à la partie réelle et à la partie imaginaire de f). Alors f admet une limite ℓ en a si et seulement si f_r et f_i admettent des limites en a, vérifiant :

$$\lim_{x \to a} f_r(x) = \text{Re}(\ell) \qquad et \qquad \lim_{x \to a} f_i(x) = \text{Im}(\ell)$$

Dans un sens, utiliser les majorations $|\text{Re}(z)| \leq |z|$ et $|\text{Im}(z)| \leq |z|$ et le théorème d'encadrement. Dans l'autre, utiliser l'inégalité triangulaire pour obtenir $|z| \leq |\text{Re}(z)| + |\text{Im}(z)|$.

Les règles principales sur le calcul des limites de fonctions à valeurs dans $\mathbb C$ sont les mêmes que dans $\mathbb R$ (sommes, produits, quotients etc.). Elles peuvent s'en déduire en décomposant toutes les fonctions en $f_r + \mathrm{i}\, f_i$, en développant (pour le produit) ou en multipliant par la quantité conjuguée (pour l'inverse) pour se ramener aux règles concernant les fonctions réelles. On peut aussi les redémontrer par ε (en gardant un voisinage au départ, pour éviter les disjonctions de cas).

Corollaire 8.1.33 (unicité de la limite, cas complexe)

Soit f une fonction de la variable réelle à valeurs dans \mathbb{C} . La limite de f en a, si elle existe, est unique.

On en déduit de façon immédiate :

Par unicité de la limite de sa partie réelle et de sa partie imaginaire. On aurait aussi pu le faire en adaptant le lemme de séparation dans le cas complexe : si $|y-x| < \varepsilon$, les boules de centre ℓ et ℓ' et de rayon $\frac{\varepsilon}{3}$ sont des voisinages de ℓ et ℓ' et sont disjoints.

I.7 Continuité

On rappelle la définition suivante :

Définition 8.1.34 (Continuité)

Soit f définie sur X et $a \in X$. On dit que f est continue en a si f admet une limite en a.

Remarque 8.1.35

Le point a est dans le domaine. Ainsi, si f est continue en a, la limite en a est nécessairement f(a).

De façon équivalente :

Proposition 8.1.36 (Propositions équivalentes à la continuité)

Soit $a \in X$. Les propriétés suivantes sont équivalentes :

- (i) f est continue en a
- (ii) $\forall \varepsilon > 0, \ \exists \eta > 0, \ \forall x \in X, \ |x a| < \eta \Longrightarrow |f(x) f(a)| < \varepsilon;$
- (iii) pour tout voisinage W de f(a), il existe un voisinage V de a tel que $f(V) \subset W$.

Équivalences déjà vues dans le cadre des limites. Le seul ingrédient supplémentaire est l'égalité de la limite avec f(a), ce qui, comme on l'a vu, est toujours le cas lorsque a est dans le domaine de f. \triangleright

Proposition 8.1.37 (Restriction de l'ensemble source)

 $Si\ f\ et\ g\ co\"incident\ sur\ un\ voisinage\ de\ a,\ f\ est\ continue\ en\ a\ si\ et\ seulement\ si\ g\ est\ continue\ en\ a.$

On a déjà vu dans cette situation l'équivalence de existence des limites, et leur égalité.

Corollaire 8.1.38

Soit f et g définies $sur\ X \subset \mathbb{R}$, et U un ouvert tel que $U \cap X \neq \emptyset$. Alors, si $f_{|U \cap X} = g_{|U \cap X}$ et si g est continue $sur\ U \cap X$, alors f aussi.

Les opérations sur les limites ont pour corollaire immédiat les opérations similaires sur les fonctions continues (sommes, produits, quotients, compositions). En particulier, les fonctions polynomiales sont continues, les fractions rationnelles sont continues sur leur domaine.

II Dérivation

Une fonction peut être plus ou moins « régulière ». La régularité d'une fonction se mesure à l'aide des propriétés de continuité et de dérivabilité. Plus on peut dériver une fonction, plus celle-ci sera régulière. Intuitivement, plus une fonction est régulière, plus son graphe est lisse.

II.1 Dérivation et tangente

Dans ce paragraphe, les fonctions étudiées seront systématiquement des fonctions définies sur un intervalle ouvert de \mathbb{R} et à valeurs réelles.

Définition 8.2.1 (dérivabilité, dérivée)

Soit f une fonction définie sur un intervalle ouvert I, et $x_0 \in I$. On dit que f est dérivable en x_0 si le taux d'accroissement $x \mapsto \frac{f(x) - f(x_0)}{x - x_0}$ défini sur $I \setminus \{x_0\}$ admet une limite finie en x_0 . Dans ce cas, on définit la dérivée de f en x_0 (ou le nombre dérivé de f en x_0) par :

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}.$$

II DÉRIVATION 15

Si f admet des nombres dérivés en tout $x \in J \subset I$, on dit que f est dérivable sur J, et l'application $x \mapsto f'(x)$ qui à x de J associe le nombre dérivé de f en x est appelée fonction dérivée de f sur J.

Remarques 8.2.2

- 1. La dérivation est une notion locale et non ponctuelle (f doit être défini sur un voisinage de x_0).
- 2. La dérivation est une notion *locale* et non *globale* (ne dépend que de la description de f sur un voisinage de x_0 , quel qu'il soit, et non de sa description globale).

Exemples 8.2.3

- 1. $f: x \mapsto c$ la fonction constante.
- 2. $f: x \mapsto x$ la fonction identité.
- 3. $f: x \mapsto \sin(x)$ et $x \mapsto \cos(x)$.

Tout comme nous avons traduit la continuité sous forme d'un développement limité à l'ordre 0 (c'est-à-dire sous forme d'une approximation polynomiale à o(1) près), on peut traduire la dérivabilité sous forme d'un développement limité à l'ordre 1 au voisinage de x_0 (c'est-à-dire une approximation polynomiale à $o(x-x_0)$ près):

Proposition 8.2.4 (Caractérisation de la dérivabilité par DL₁)

Avec les notations précédentes, f est dérivable de dérivée p en x_0 si et seulement s'il existe une application ε définie sur un voisinage V de x_0 , de limite nulle lorsque x tend vers x_0 , et telle que

$$\forall x \in V \cap I, \quad f(x) = f(x_0) + (x - x_0)p + (x - x_0)\varepsilon(x).$$

Par un changement de variable, on peut aussi caractériser la dérivée $f'(x_0)$ (existence et valeur) par l'existence de ε_0 définie au voisinage de 0, de limite nulle en 0, et telle que pour tout $h \in V$ tel que $x_0 + h \in I$,

$$f(x_0 + h) = f(x_0) + hf'(x_0) + h\varepsilon_0(h).$$

Remarque 8.2.5

Interprétation géométrique : la dérivée en x_0 est la pente de la tangente à la courbe de f en x_0 . La tangente est obtenue comme limite, au sens géométrique, des cordes entre le point de la courbe d'abscisse x_0 et un point d'abscisse x, tendant vers x_0 .

Définition 8.2.6 (Tangente)

Soit f une fonction dérivable sur un intervalle ouvert I et $x_0 \in I$. Alors la tangente à la courbe de f en x_0 est la droite d'équation $y = f'(x_0)(x - x_0) + f(x_0)$.

Proposition 8.2.7

La tangente est la droite approchant « au mieux » la courbe de f au voisinage de x_0 .

C'est la caractérisation par DL. Considérer une autre droite et comparer les différences à la fonction f, au voisinage de x_0 .

Théorème 8.2.8 (Continuité des fonctions dérivables)

Si f est dérivable en x_0 , alors f est continue en x_0 . La réciproque est fausse!

Immédiat en écrivant
$$f(x) - f(a) = \frac{f(x) - f(a)}{x - a} \cdot (x - a)$$
.

Note Historique 8.2.9

- Newton, en 1669, introduit la notation $(\dot{x}, \dot{y}, \dot{z})$, pour les dérivées des coordonnées d'un point, qu'il appelle « fluxions » des « fluentes » (x, y, z), qu'il définit comme les vitesses dont les fluentes sont augmentées graduellement et indéfiniment. Sa notation est encore utilisée actuellement en physique.
- En 1674, Leibniz introduit la notation dx pour désigner une variation infinimésimale sur l'abscisse, et dy pour désigner une variation infinitésimale sur l'ordonnée. Si y dépend de x, $\frac{dy}{dx}$ désigne donc la variation infinitésimale de la fonction y rapportée à la variation infinitésimale de x qui l'a provoquée : il s'agit bel et bien de la définition de Fermat, et rien de plus : pas de nouvelle théorie, juste une nouvelle notation, encore largement utilisée aujourd'hui, notamment sous la forme non quotientée (pensez aux intégrales!)
- ullet À la fin du 18-ième siècle, Joseph-Louis Lagrange introduit la terminologie « dérivée » et la notation f'.
- La formalisation rigoureuse est due à Karl Weierstrass dans la deuxième moitié du 19-ième siècle, s'appuyant sur une définition rigoureuse de la notion de limite et de continuité (dont il donne également pour la première fois une définition rigoureuse et précise)

II.2 Dérivées à droite et à gauche

On note I le domaine de définition de f

Définition 8.2.10 (Dérivées à droite et à gauche)

Soit $x_0 \in I$. On dit que f est dérivable à droite en x_0 si l'expression $\frac{f(x) - f(x_0)}{x - x_0}$ admet une limite à droite lorsque x tend vers x_0 . On note alors :

$$f'_d(x_0) = \lim_{x \to x_0^+} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{h \to 0^+} \frac{f(x_0 + h) - f(x_0)}{h}.$$

De même pour la dérivée à gauche : en cas d'existence,

$$f'_g(x_0) = \lim_{x \to x_0^-} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{h \to 0^-} \frac{f(x_0 + h) - f(x_0)}{h}.$$

Évidemment, la première condition pour que la dérivée à droite existe est que cette limite ait un sens, donc que x_0 ne soit pas la borne supérieure de I.

Remarque 8.2.11

La dérivabilité à droite en x_0 équivaut à la dérivabilité en x_0 de la restriction de f à $I \cap [x_0, +\infty[$.

II DÉRIVATION 17

Proposition 8.2.12 (Caractérisation de la dérivabilité par f_q' et f_d')

Soit $x_0 \in I$, non égal à une des bornes de I. Alors f est dérivable en x_0 si et seulement si f est dérivable à gauche et à droite en x_0 , et $f'_q(x_0) = f'_d(x_0)$. Dans ce cas, $f'(x_0) = f'_d(x_0) = f'_g(x_0)$.

Par caractérisation de la limite (du taux d'accroissement) par limites à droite et à gauche.

\triangleright

Exemples 8.2.13

- 1. $x \mapsto |\sin(x)|$
- $2. x \mapsto |x|^3.$

II.3 Fonctions de classe C^n

Soit une fonction réelle f définie sur un intervalle I, et dérivable sur cet intervalle I. La fonction dérivée f' est alors définie sur I. On peut alors étudier les propriétés de dérivabilité de f', et, en cas de dérivabilité, on obtient la dérivée seconde f'' (dérivée de la dérivée). On peut continuer de la sorte tant que c'est possible.

Définition 8.2.14 (dérivées d'ordre supérieur)

Soit I un intervalle de \mathbb{R} . On dit que f est n-fois dérivable si on peut dériver f sur I, n fois de suite. Cela définit alors une fonction $f^{(n)}$, appelée dérivée n-ième de la fonction f.

Plus précisément, il s'agit d'une définition par récurrence, basé sur la formule suivante, en tout point où c'est possible :

$$f^{(n)}(x) = (f^{(n-1)})'(x).$$

Remarques 8.2.15

- N'oubliez pas les parenthèses autour de l'exposant, pour bien distinguer la dérivation de l'exponentiation.
- Pour n=1 et n=2, on utilise généralement les notations f' et f'' (« f seconde ») au lieu de $f^{(1)}$ et $f^{(2)}$. On rencontre aussi parfois f''' pour $f^{(3)}$ (« f tierce »). De plus, la notation $f^{(0)}$ désigne la fonction f elle-même.
- Pour pouvoir définir la dérivée n-ième de f en x_0 , il faut pouvoir dériver $f^{(n-1)}$ en x_0 , et il faut donc que $f^{(n-1)}$ soit définie sur tout un voisinage de x_0 et non seulement en x_0 .

Définition 8.2.16 (fonctions de classe C^n)

Une fonction f est dite de classe C^n sur un intervalle I si elle est n fois dérivable sur I et si $f^{(n)}$ est continue.

Ainsi, une fonction est de classe C^0 si elle est continue. Elle est de classe C^1 si elle est dérivable (donc continue) et de dérivée continue, etc. Remarquez que la dérivabilité ne suffit pas à obtenir la classe C^1 .

Exemple 8.2.17

 $f: x \mapsto x^2 \sin \frac{1}{x}$, prolongée par continuité en 0.

Notation 8.2.18 ($C^n(I)$, $\mathcal{D}^n(I)$)

Soit I un intervalle et $n \in \mathbb{N}$. On note $\mathcal{D}^n(I)$ l'ensemble des fonctions définies sur I et n fois dérivables sur I. On note $\mathcal{C}^n(I)$ l'ensemble des fonctions n fois dérivables sur I et de dérivée n-ième continue.

En particulier, $\mathcal{D}^0(I)$ est l'ensemble de toutes les fonctions définies sur I, $\mathcal{C}^0(I)$ est l'ensemble de toutes les fonctions continues sur I.

Proposition 8.2.19

On a une chaîne d'inclusions :

$$\cdots \subset \mathcal{C}^n(I) \subset \mathcal{D}^n(I) \subset \mathcal{C}^{n-1}(I) \subset \mathcal{D}^{n-1}(I) \subset \cdots \subset \mathcal{C}^1(I) \subset \mathcal{D}^1(I) \subset \mathcal{C}^0(I) \subset \mathcal{D}^0(I).$$

Une inclusion sur deux est évidente par définition, l'autre provient de la continuité d'une fonction dérivable.

Définition 8.2.20 (Fonctions de classe C^{∞})

On dit que f est de classe \mathcal{C}^{∞} sur I si f est de classe \mathcal{C}^n pour tout $n \in \mathbb{N}$, donc si f est infiniment dérivable. On note $\mathcal{C}^{\infty}(I)$ l'ensemble des fonctions de classe \mathcal{C}^{∞} sur I.

Il revient au même de dire que f est dans $\mathcal{D}^n(I)$ pour tout $n \in \mathbb{N}$.

II.4 Théorème des accroissements finis, fonctions lipschitziennes

On admet un résultat important, qu'on démontrera plus loin, et qui est à la base de plusieurs résultats dans la suite de ce chapitre (théorèmes de prolongement, théorème de variation des fonctions, positionnement de la courbe par rapport aux tangentes pour les fonctions convexes)

Théorème 8.2.21 (Théorème des accroissements finis, TAF, admis provisoirement)

Soit a < b et f une application définie et continue sur le segment [a,b] à valeurs dans \mathbb{R} , dérivable sur [a,b[. Alors il existe un point $c \in]a,b[$ tel que

$$\frac{f(b) - f(a)}{b - a} = f'(c).$$

L'interprétation géométrique de ce résultat est assez limpide : il existe une tangente en un point intermédiaire à a et b, et parallèle à la corde entre a et b.

Corollaire 8.2.22 (Inégalité des accroissements finis, IAF)

• Soit f une application définie et continue sur le segment [a,b], à valeurs dans \mathbb{R} , dérivable sur [a,b[. On suppose que pour tout $x \in]a,b[$,

$$m \leqslant f'(x) \leqslant M$$
.

Alors:

$$m \leqslant \frac{f(b) - f(a)}{b - a} \leqslant M.$$

• Écrite sous cette forme, l'IAF est valide aussi si b < a.

II DÉRIVATION 19

- En particulier, on peut prendre $m = \inf_{x \in]a,b[} f'(x)$ et $M = \sup_{x \in [a,b[} f'(x), \ s$ 'ils existent dans \mathbb{R} .
- $Si |f'| \leq M sur |a, b|$, alors

$$|f(b) - f(a)| \leqslant M|b - a|.$$

L'IAF est à mettre en rapport avec la notion suivante :

Définition 8.2.23 (Fonction lipschitzienne, fonction contractante)

Soit f une fonction définie sur un intervalle I, à valeurs dans \mathbb{R} . On dit que f est L-lipschitzienne sur I si pour tout $(x,y) \in I^2$,

$$|f(x) - f(y)| \le L|x - y|.$$

Le réel L est appelé facteur de Lipschitz de f. Si de plus L < 1, on dit que f est contractante.

Proposition 8.2.24 (continuité des fonctions lipschitziennes)

Soit f une fonction d'un intervalle I dans \mathbb{R} , lipschitzienne sur I. Alors f est continue sur I.

Par le théorème d'encadrement.

Proposition 8.2.25 (Caractère lipschitzien des fonctions à dérivée bornée)

Soit f une application dérivable sur un intervalle I, et à dérivée bornée sur I. Alors f est lipschitzienne.

Conséquence immédiate de l'IAF.

II.5 Théorèmes de prolongement

On termine cette étude des fonctions de classe \mathcal{C}^n par des propriétés de prolongement, extrêmement utiles pour justifier la classe \mathcal{C}^n d'une fonction obtenue par prolongement en un point. Ces théorèmes de prolongement sont exprimés sur la borne gauche de l'intervalle. On pourrait bien entendu les adapter pour la borne droite.

Le premier résultat est élémentaire :

Théorème 8.2.26 (Prolongement par continuité)

Soit f une fonction continue sur [a,b], et admettant une limite ℓ en a. Il existe une unique fonction g continue sur [a,b] et coïncidant avec f sur [a,b]. Elle vérifie $g(a) = \ell$. La fonction g est appelée prolongement par continuité de f sur [a,b].

Ce n'est rien d'autre que l'unicité de la limite.

Le deuxième théorème de prolongement affirme que sous certaines conditions, la dérivabilité en un point peut s'étudier en étudiant la limite de la dérivée au lieu de la limite du taux d'accroissement :

Théorème 8.2.27 (Théorème de la limite de la dérivée)

Soit I un intervalle de \mathbb{R} , et $a \in I$. Soit f une fonction de I dans \mathbb{R} , continue sur I, dérivable sur $I \setminus \{a\}$.

- Si f' admet une limite $\ell \in \mathbb{R}$ lorsque $x \to a$ $(x \neq a)$, alors f est dérivable en a et $f'(a) = \ell$. La fonction f' est alors continue en a.
- Si $f'(x) \to +\infty$ lorsque $x \to a$, alors le taux d'accroissement $\frac{f(x) f(a)}{x a}$ tend aussi vers $+\infty$ (et la courbe admet donc une tangente verticale en a).

Utiliser le TAF entre a et x, pour écrire le taux d'accroissement sous la forme $f'(c_x)$, puis faire tendre x vers a.

On peut aussi s'en sortir avec l'inégalité des accroissements finis, ce qui permet de généraliser à des fonctions à valeurs complexes pour lesquelles l'IAF est valide, contrairement au TAF.

On en déduit de façon plus générale :

Théorème 8.2.28 (Théorème de la classe C^n par prolongement)

Soit I un intervalle et $x_0 \in I$. Soit f une fonction définie et de classe C^n sur $I \setminus \{x_0\}$. Si pour tout $k \in [0,n]$, $f^{(k)}$ admet une limite finie en x_0 , alors f peut être prolongée sur I en une fonction \tilde{f} de classe C^n sur I. De plus, on aura alors :

$$\forall k \in [0, n], \quad \tilde{f}^{(k)}(x_0) = \lim_{x \to x_0} f^{(k)}(x).$$

Le cas n=0 est le théorème de prolongement par continuité. Le cas n=1 est une conséquence immédiate du théorème de la limite de la dérivée. Le cas général s'en déduit par récurrence, en appliquant l'HR à f puis le théorème de la limite de la dérivée à $f^{(n)}$.

Remarque 8.2.29

Le théorème de la classe \mathcal{C}^n par prolongement est souvent utilisé sur des fonctions définies sur I tout entier. L'hypothèse sur la limite de la dérivée d'ordre 0 doit alors être remplacée par une hypothèse de continuité (pour s'assurer que la fonction définie sur I correspond bien au prolongement par continuité de la fonction restreinte à $I \setminus \{x_0\}$, à laquelle on applique le théorème de prolongement).

II.6 Règles de dérivation

Il est important d'avoir une bonne maîtrise des règles de calcul suivantes, permettant de dériver toutes les fonctions construites à partir des fonctions usuelles, à condition de connaître les dérivées de ces fonctions usuelles. Dans tout ce paragraphe, I désigne un intervalle ouvert de \mathbb{R} .

Proposition 8.2.30 (dérivée d'une somme, d'un produit)

Soit f et g deux fonctions de I dans \mathbb{R} , et $x \in I$. Soit λ un réel.

- 1. Si f est dérivable en x, alors λf aussi et $(\lambda f)'(x) = \lambda f'(x)$.
- 2. Si f et g sont dérivables en x, alors f + g aussi et (f + g)'(x) = f'(x) + g'(x).
- 3. Si f et g sont dérivables en x, fg aussi et (fg)'(x) = f'(x)g(x) + f(x)g'(x)

II DÉRIVATION 21

- 4. Si g est dérivable en x et $g(x) \neq 0$, alors $\frac{1}{g}$ aussi et $\left(\frac{1}{g}\right)'(x) = \frac{-g'(x)}{g^2(x)}$
- 5. Si f et g sont dérivables en x et $g(x) \neq 0$, alors $\frac{f}{g}$ aussi et $\left(\frac{f}{g}\right)'(x) = \frac{f'(x)g(x) f(x)g'(x)}{g^2(x)}$
- - 1 et 2 sont immédiats en formant le taux d'accroissement.
 - Pour 3, introduire artificiellement f(x+h)g(x) pour exprimer le taux d'accroissement de fg à l'aide des taux d'accroissement de f et g. Utiliser la continuité de f.
 - ullet Pour 4, former le taux d'accroissement et mettre sur le même dénominateur. Utiliser la continuité de g.
 - 5 est la combinaison de 3 et 4.

 \triangleright

Exemples 8.2.31

- Dérivée de $x \mapsto x^2$
- Dérivée de $x \mapsto \frac{1}{x}$.

Corollaire 8.2.32 (dérivée d'un produit de n termes)

Soit $f_1, \ldots, f_n : I \to \mathbb{R}$ et $x_0 \in I$. Si f_1, \ldots, f_n sont dérivables en x_0 , alors leur produit aussi, et :

$$(f_1 \cdots f_n)'(x_0) = \sum_{k=1}^n f_k'(x_0) \prod_{i \in [1,n] \setminus \{k\}} f_i(x_0).$$

Si les $f_i(x_0)$ sont tous non nuls, ceci se réexprime sous la forme

$$(f_1 \cdots f_n)'(x_0) = \left(\prod_{i \in [1,n]} f_i\right) \sum_{i=1}^n \frac{f_i'(x_0)}{f_i(x_0)}$$

S'il existe i_0 tel que $f_{i_0}(x_0) = 0$, alors la plupart des termes s'annulent :

$$(f_1 \cdots f_n)'(x_0) = f'_{i_0}(x_0) \prod_{i \neq i_0} f_i(x_0).$$

Récurrence sur n à partir de la formule de dérivation d'un produit.

Exemples 8.2.33

- Dérivée de $f: x \mapsto x^n$.
- Dérivée d'un polynôme.

On en déduit notamment le résultat suivant à bien maîtriser pour son utilité.

Proposition 8.2.34 (Dérivées successives des puissances)

Soit $f: x \mapsto x^n$, et $k \in \mathbb{N}$.

• Si $k \leq n$, pour tout $x \in \mathbb{R}$, $f^{(k)}(x) = \frac{n!}{(n-k)!}x^{n-k}$.

• Si k > n, pour tout $x \in \mathbb{R}$, $f^{(k)}(x) = 0$

Récurrence.

Proposition 8.2.35 (Dérivation d'une composition)

Soit I et J deux intervalles ouverts de \mathbb{R} , et $f: I \to J$, $g: J \to \mathbb{R}$. Soit $x \in I$. Si f est dérivable en x et g dérivable en y = f(x), alors $g \circ f$ est dérivable en x, et :

$$(g \circ f)'(x) = f'(x)g'(y) = f'(x) \cdot g' \circ f(x).$$

Ainsi, $g \circ f' = f' \cdot (g' \circ f)$

d Éléments de preuve.

L'idée qui vient à l'esprit est de multiplier et diviser par f(y) - f(x). Ça marche bien si cette quantité ne s'annule pas lorsque y est dans un voisinage de x, sauf pour y = x, et permet de bien comprendre la formule (c'est la manipulation des physiciens sur les df).

Pour obtenir la formule dans la situation générale, on peut éviter les quotients en utilisant la caractérisation par DL_1 .

Un cas particulier important est le cas de la dérivée logarithmique

Proposition/Définition 8.2.36 (Dérivée logarithmique)

Soit f une fonction dérivable d'un intervalle I dans \mathbb{R}_+^* . Alors $\ln \circ f$ est dérivable, de dérivée :

$$(\ln \circ f)' = \frac{f'}{f}$$

L'expression $\frac{f'}{f}$ s'appelle dérivée logarithmique de f.

Plus généralement, si f est dérivable et de signe constant sur un intervalle ou une union d'intervalles, et ne s'annule pas, alors

$$(\ln \circ |f|)' = \frac{f'}{f}.$$

Remarque 8.2.37

La dérivée de f s'exprime facilement à l'aide de f et de sa dérivée logarithmique. Ainsi, la dérivée logarithmique est une façon commode de calculer f' lorsque le passage au logarithme simplifie le problème. C'est le cas en particulier lorsqu'il y a des produits en jeu, puisque le logarithme va transformer les produits en sommes, plus simples à dériver. On peut remarquer d'ailleurs que dans le cas de fonctions positives, la règle de dérivation des produits de n terme peut s'obtenir facilement par dérivation logarithmique.

Dans le cas général, l'utilisation de la dérivée logarithmique nécessitera un contrôle systématique des signes.

La formule de dérivation d'une composée se généralise au cas d'un plus grand nombre de composée. Il s'agit du produit des dérivées de chacune des fonctions, évaluées au point image du point initial x_1 par les fonctions précédemment appliquées :

II DÉRIVATION 23

Proposition 8.2.38 (Dérivation d'une composition itérée)

Soit $f_1, f_2, f_3, \ldots, f_n$ des fonctions dérivables respectivement en x_1 , en $x_2 = f_1(x_1)$, en $x_3 = f_2(x_2) = f_2 \circ f_1(x_1)$, ..., en $x_n = f_{n-1}(x_{n-1}) = f_{n-1} \circ \cdots \circ f_1(x_1)$. Alors $f_n \circ \cdots \circ f_1$ est dérivable en x_1 et :

$$(f_n \circ \cdots \circ f_1)'(x_1) = f'_n(x_n) \dots f'_1(x_1)$$
$$= \left[f'_n \circ f_{n-1} \circ \cdots \circ f_1(x_1) \right] \times \left[f'_{n-1} \circ f_{n-2} \circ \cdots \circ f_1(x_1) \right] \times \cdots \times f'_1(x_1).$$

Récurrence immédiate

Exemple 8.2.39

Exprimer la dérivée de $x \mapsto \ln(3 + \sin(x^3))$.

La dernière règle de dérivation que nous voyons est la règle de dérivation des fonctions réciproques. Nous admettons pour cela le lemme suivant :

Lemme 8.2.40 (continuité des réciproques, admis pour l'instant)

Soit I et J deux intervalles et soit f une application bijective continue de I dans J. Alors $f^{-1}: J \to I$ est continue sur J.

Ce lemme, à l'apparente évidence sous l'angle des graphes, nécessite quelques propriétés sur les fonctions continues sur tout un intervalle. Ces propriétés étant étudiées dans un chapitre ultérieur, nous démontrerons le lemme à cette occasion. Il s'agit en fait d'une des parties du théorème de la bijection. À l'aide de ce lemme nous pouvons démontrer facilement le théorème de dérivation des réciproques :

Théorème 8.2.41 (Dérivation des fonctions réciproques)

Soit I et J deux intervalles, et soit f une application bijective continue de I dans J. Soit $t_0 \in I$, et $x_0 = f(t_0)$. Alors:

• si f est dérivable en t_0 , et si $f'(t_0) \neq 0$, alors f^{-1} est dérivable en x_0 , et :

$$(f^{-1})'(x_0) = \frac{1}{f'(t_0)} = \frac{1}{f' \circ f^{-1}(x_0)}.$$

• Si f est dérivable en t_0 et $f'(t_0) = 0$, alors f^{-1} n'est pas dérivable en x_0 .

√ Éléments de preuve.

Écrire le taux d'accroissement entre x et x_0 , et au dénominateur, écrire $x - x_0 = f(f^{-1}(x)) - f(f^{-1}(x_0))$ afin d'introduire le taux d'accroissement de f entre $f^{-1}(x_0)$ et $f^{-1}(x)$. Passer à la limite en utilisant la continuité de f^{-1} .

Exemple 8.2.42

- Dérivée de $x \mapsto e^x$, définie comme réciproque de ln, elle-même définie comme primitive sur \mathbb{R}_+^* de $x \mapsto \frac{1}{x}$ s'annulant en 1.
- Dérivée de $x \mapsto x^{\alpha} = e^{\alpha \ln(x)} \text{ sur } \mathbb{R}_{+}^{*}$.

L'utilisation de la définition de la dérivée par taux d'accroissement permet alors d'obtenir un certain nombre de limites remarquables, pour les fonctions pour lesquels on a trouvé l'expression de la dérivée par des moyens autres que l'utilisation directe du taux d'accroissement :

Proposition 8.2.43 (Limites remarquables pour exp, ln, les puissances)

On a (pour $\alpha \in \mathbb{R}$)

$$\lim_{x \to 0} \frac{\ln(1+x)}{x} = 1, \qquad \lim_{x \to 0} \frac{e^x - 1}{x} = 1, \qquad \lim_{x \to 0} \frac{(1+x)^{\alpha} - 1}{x} = \alpha.$$

II.7 Stabilité des propriétés de régularité

Les propriétés s'établissent facilement par récurrence à partir des propriétés similaires au rang 1.

Proposition 8.2.44 (Règles pour les fonctions n fois dérivables en un point)

Soit f et g deux fonctions de I dans \mathbb{R} , et $x_0 \in I$. Soit $n \in \mathbb{N}^*$. Soit λ et μ deux réels.

- 1. Si f est n fois dérivable en x_0 , alors λf aussi et $(\lambda f)^{(n)}(x_0) = \lambda f^{(n)}(x_0)$.
- 2. Si f et g sont n fois dérivables en x_0 , alors f + g aussi et $(f + g)^{(n)}(x_0) = f^{(n)}(x_0) + g^{(n)}(x_0)$.
- 3. (Formule de Leibniz) $Si\ f\ et\ g\ sont\ n\ fois\ dérivables\ en\ x_0,\ fg\ aussi\ et\ :$

$$(fg)^{(n)}(x_0) = \sum_{k=0}^{n} \binom{n}{k} f^{(k)}(x_0) g^{(n-k)}(x_0).$$

- 4. Si f et g sont n fois dérivables en x_0 et si g ne s'annule pas en x_0 , alors $\frac{f}{g}$ est n fois dérivable en x_0 (pas de formule simple). Si de plus, $f^{(n)}$ et $g^{(n)}$ sont continues en x_0 , alors $\left(\frac{f}{g}\right)^{(n)}$ aussi.

Récurrences plus ou moins immédiates. Pour la formule de Leibniz, l'argument se déroule comme pour la formule du binôme, en utilisant la formule de Pascal. D'ailleurs, la formule du binôme peut se déduire de la formule de Leibniz, appliquée à des fonctions judicieusement choisies.

Exemple 8.2.45

Dérivée n-ième de $x \mapsto xe^x$.

Proposition 8.2.46 (Composition de fonctions n fois dérivables)

Soit I et J deux intervalles, et f une fonction de I dans J, g une fonction de J dans \mathbb{R} . Soit $x_0 \in I$. Si f est n fois dérivable en x_0 et g est n fois dérivable en $f(x_0)$, alors $g \circ f$ est n fois dérivable en x_0 . Si de plus $f^{(n)}$ et $g^{(n)}$ sont continues en x_0 , alors $(g \circ f)^{(n)}$ également.

Récurrence.

II DÉRIVATION 25

Remarque 8.2.47 (Formule de Faà di Bruno, HP, à ne surtout pas apprendre par coeur)

Il existe une formule explicite pour la dérivée d'ordre n d'une composition (formule de Faà di Bruno), mais cette formule est fort complexe. Pour le plaisir, on énonce, sans démonstration :

$$(g \circ f)^{(n)} = \sum_{\substack{(m_1, \dots, m_n) \in \mathbb{N}^n \\ 1m_1 + 2m_2 + \dots + nm_n = n}} \frac{n!}{m_1! m_2! \cdots m_n!} \prod_{k=1}^n \left(\frac{f^{(k)}}{k!}\right)^{m_k} \times g^{(m_1 + \dots + m_n)} \circ f.$$

Vérifiez que pour n=1, on retombe sur la formule connue...

La seule formule de dérivation itérée d'une composée à connaître est le cas simple d'une composée du type $x \mapsto f(ax+b)$, qui s'obtient par une récurrence immédiate (contraîrement à celle permettant d'obtenir la formule de Faà di Bruno).

Théorème 8.2.48 (Dérivée de $x \mapsto f(ax + b)$)

Soit a et b deux réels, $x_0 \in \mathbb{R}$ et f une application n fois dérivable en $ax_0 + b$. Alors la fonction $g: x \mapsto f(ax + b)$ est n fois dérivable en x_0 et

$$g^{(n)}(x_0) = a^n f^{(n)}(ax_0 + b).$$

Récurrence immédiate.

Le lecteur curieux pourra s'assurer que cette formule est bien conforme à la formule générale de Faà di Bruno.

Proposition 8.2.49 (Règles de stabilité dans $\mathcal{D}^n(I)$)

Soit $n \in \mathbb{N}^*$

- 1. L'ensemble $\mathcal{D}^n(I)$ est stable par combinaisons linéaires, produit et quotient par une fonction ne s'annulant pas.
- 2. Soit $f \in \mathcal{D}^n(I)$ à valeurs dans un intervalle J, et $g \in \mathcal{D}^n(J)$. Alors $g \circ f \in \mathcal{D}^n(I)$
- 3. Soit $f \in \mathcal{D}^n(I)$, bijective de I dans J, et telle que f' ne s'annule pas sur I. Alors $f^{-1} \in \mathcal{D}^n(J)$.

Seul le dernier point n'a pas encore été justifié. Faire une récurrence en passant par l'expression de la dérivée de f^{-1} . Étudier dans la même récurrence le cas $f \in \mathcal{C}^n(I)$, de sorte à démontrer du même coup la propriété suivante.

On a les mêmes règles pour la classe \mathcal{C}^n :

Proposition 8.2.50 (Règles de stabilité dans $C^n(I)$)

Soit $n \in \mathbb{N}$, ou $n = +\infty$.

- 1. L'ensemble $C^n(I)$ est stable par combinaisons linéaires, produit et quotient par une fonction ne s'annulant pas.
- 2. Soit $f \in C^n(I)$ à valeurs dans un intervalle J, et $g \in C^n(J)$. Alors $g \circ f \in C^n(I)$
- 3. Soit $f \in C^n(I)$, bijective de I dans J, et telle que, si $n \neq 0$, f' ne s'annule pas sur I. Alors $f^{-1} \in C^n(J)$.

d Éléments de preuve.

Tout a déjà été fait. C'est un récapitulatif.

II.8 Dérivations de fonctions réelles à valeurs dans $\mathbb C$

Nous élargissons dans ce paragraphe la notion de dérivation au cas de fonctions complexes, ou plus précisément, de fonctions d'une variable réelle, à valeurs dans \mathbb{C} .

Définition 8.2.51 (Dérivation d'une fonction de $\mathbb R$ dans $\mathbb C$)

Soit I =]a, b[un intervalle ouvert de \mathbb{R} $(a, b \in \overline{\mathbb{R}})$ et $x_0 \in I$. Soit $f : I \longrightarrow \mathbb{C}$ une fonction à valeurs complexes. On dit que f est dérivable en x_0 si l'expression $\frac{f(x_0 + h) - f(x_0)}{h}$ admet une limite dans \mathbb{C} lorsque le réel h tend vers 0, c'est-à-dire s'il existe $\ell \in \mathbb{C}$ tel que

$$\lim_{h \to 0} \left| \frac{f(x_0 + h) - f(x_0)}{h} - \ell \right| = 0.$$

Dans ce cas, on définit la dérivée de f en x_0 par :

$$f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$

La dérivation d'une fonction à valeurs dans \mathbb{C} se ramène en fait à la dérivation de deux fonctions à valeurs dans \mathbb{R} (la partie réelle et la partie imaginaire) :

Proposition 8.2.52 (Dérivation des parties réelles et imaginaires)

Soit, avec les mêmes notations, $f: I \longrightarrow \mathbb{C}$, et définissons les fonctions f_r et f_i de I dans \mathbb{C} par :

$$\forall x \in I, \quad f_r(x) = \text{Re}(f(x)) \qquad et \qquad f_i(x) = \text{Im}(f(x)).$$

Alors f est dérivable en x_0 si et seulement si f_r et f_i le sont, et dans ce cas,

$$f'(x_0) = f'_{\pi}(x_0) + i f'_{\sigma}(x_0).$$

Immédiat en revenant à la définition, et en utilisant le résultat similaire pour les limites de fonctions à valeurs dans \mathbb{C} .

Les règles de dérivation des fonctions à valeurs dans $\mathbb C$ sont les mêmes que pour les fonctions à valeurs réelles :

Proposition 8.2.53 (principales règles de dérivation des fonctions complexes)

Soit $f,g:I\longrightarrow\mathbb{C}$ deux fonctions complexes définie sur un intervalle ouvert I de \mathbb{R} et dérivables en $x_0\in I$. Alors :

- (i) f + g est dérivable en x_0 et $(f + g)'(x_0) = f'(x_0) + g'(x_0)$;
- (ii) pour tout $\alpha \in \mathbb{C}$, αf est dérivable en x_0 et $(\alpha f)'(x_0) = \alpha f'(x_0)$;
- (iii) fg est dérivable en x_0 et $(fg)'(x_0) = f'(x_0)g(x_0) + f(x_0)g'(x_0)$;
- (iv) si $g(x_0) \neq 0$, $\frac{f}{g}$ est dérivable en x_0 et $\left(\frac{f}{g}\right)'(x_0) = \frac{f'(x_0)g(x_0) f(x_0)g'(x_0)}{g(x_0)^2}$.

Les démonstrations faites dans le cas réel s'adaptent.

On ne donne pas de règle générale de dérivation de compositions : composer à la source par une fonction de \mathbb{R} dans \mathbb{R} ne pose pas de problème en considérant partie réelle et partie imaginaire. Composer à l'arrivée

III FONCTIONS CONVEXES 27

est plus délicat, car cela implique des fonctions dont la variable est complexe; la notion de dérivation de fonctions d'une variable complexe existe (fonctions holomorphes), mais c'est une autre histoire. Nous nous contentons du cas particulier de la composition par l'exponentielle complexe, très utile en physique :

Proposition 8.2.54 (Dérivée de $t \mapsto e^{\varphi(t)}$)

Soit $\varphi: I \longrightarrow \mathbb{C}$ une fonction à valeurs complexes définie sur un intervalle I ouvert de \mathbb{R} et soit $x_0 \in I$. Soit $\psi: x \mapsto e^{\varphi(t)}$.

 $Si \varphi$ est dérivable en x_0 , alors ψ aussi, et

$$\psi'(x_0) = \varphi'(x_0) e^{\varphi(x_0)}.$$

En décomposant $\varphi = \varphi_r + \mathrm{i}\,\varphi_i$, on décompose ψ en

$$\psi = e^{\varphi_r} \cos \circ \varphi_i + i e^{\varphi_r} \sin \circ \varphi_i.$$

Dériver ces composées réelles.

Exemples 8.2.55

- 1. Calculer la dérivée de $x \mapsto e^{ix}$ sur \mathbb{R} .
- 2. Calculer la dérivée de $x \mapsto e^{i x^2}$ sur \mathbb{R} .
- 3. Calculer la dérivée de $x \mapsto e^{e^{ix}}$ sur \mathbb{R} .

En identifiant \mathbb{C} à \mathbb{R}^2 , la dérivée de φ correspond à un vecteur tangent (dans un sens que nous ne définissons pas) à la courbe paramétrée par φ au point $\varphi(x_0)$ (voir l'exemple de $x \mapsto e^{ix}$: la tangente au cercle trigonométrique est orthogonal au rayon, donc obtenu par multiplication par un imaginaire pur, ce qui correspond bien au facteur i qu'on obtient dans la dérivation)

III Fonctions convexes

III.1 Notion de convexité

Définition 8.3.1 (Convexité, concavité)

Soit I un intervalle, et $f: I \to \mathbb{R}$. On dit que f est convexe sur I si:

$$\forall (x,y) \in I^2, \ \forall \lambda \in [0,1], \ f(\lambda x + (1-\lambda)y) \leq \lambda f(x) + (1-\lambda)f(y).$$

On dit que f est concave sur I si :

$$\forall (x,y) \in I^2, \ \forall \lambda \in [0,1], \ f(\lambda x + (1-\lambda)y) \geqslant \lambda f(x) + (1-\lambda)f(y).$$

Remarque 8.3.2 (Interprétation géométrique de la convexité)

f est convexe si la courbe reste sous les cordes (i.e. sous les segments reliant deux points de la courbe)

Théorème 8.3.3 (Inégalité de Jensen)

Soit f une fonction convexe sur un intervalle I, et soit $(\lambda_1, \ldots, \lambda_n) \in \mathbb{R}^n_+$ tels que $\sum_{k=1}^n \lambda_k = 1$. Alors,

pour tout $(x_1, \ldots, x_n) \in I^n$, le réel $\sum_{k=1}^n \lambda_k x_k$ est dans I, et

$$f\left(\sum_{k=1}^{n} \lambda_k x_k\right) \leqslant \sum_{k=1}^{n} \lambda_k f(x_k).$$

Récurrence sur n. Il ne faut pas oublier de renormaliser les poids.

On obtient bien évidemment un énoncé similaire pour les fonctions concaves, l'inégalité étant dans l'autre sens.

III.2 Étude des pentes d'une fonction convexe

Lemme 8.3.4 (Lemme des pentes)

Soit f une fonction convexe sur un intervalle I, et x < y < z trois points de I. Alors

$$\frac{f(y) - f(x)}{y - x} \leqslant \frac{f(z) - f(x)}{z - x} \leqslant \frac{f(z) - f(y)}{z - y}.$$

√ Éléments de preuve.

Justifier qu'il existe un $\lambda \in]0,1[$ tel que $y=(1-\lambda)x+\lambda z.$ On obtient alors le lemme des pentes en utilisant l'inégalité de convexité.

On note F_u la fonction taux d'accroissement, définie comme usuellement sur I par :

$$\forall t \in I, \quad F_u(t) = \frac{f(t) - f(u)}{t - u}.$$

Théorème 8.3.5

Soit I un intervalle de \mathbb{R} , et $f: I \to \mathbb{R}$ une fonction. La fonction f est convexe sur I si et seulement si pour tout $u \in I$, l'application F_u est croissante sur $I \setminus \{u\}$.

Le sens direct s'obtient à l'aide du lemme des pentes, en comparant $F_u(t_1)$ et $F_u(t_2)$. Il faut discuter sur la position relative de t_1, t_2 et u.

Réciproquement, pour obtenir l'inégalité de convexité, considérer u = x, $t_2 = y$, et t_1 ?

On remarque que le lemme des pentes permet de préciser un peu l'inégalité définissant la convexité, qui positionne la courbe par rapport aux cordes, en considérant la sécante (la droite qui supporte la corde)

Proposition 8.3.6 (Positionnement de la courbe par rapport à la sécante)

Soit f une fonction convexe sur un intervalle I, et x < y deux points de I. La sécante aux points x et y est au-dessus de la courbe (au sens large) sur [x, y], et en-dessous sur $I \setminus [x, y]$.

III.3 Étude de la dérivabilité des fonctions convexes

III FONCTIONS CONVEXES 29

Théorème 8.3.7 (Dérivabilité des fonctions convexes)

Soit I un intervalle ouvert, et $f: I \to \mathbb{R}$ une fonction convexe. Alors f est dérivable à droite et à gauche en tout point de I, et :

- 1. $\forall x \in I, \quad f'_q(x) \leqslant f'_d(x).;$
- 2. $\forall (x,y) \in I^2, \ x < y \Longrightarrow f'_d(x) \leqslant f'_g(y);$
- 3. f'_q et f'_d sont croissantes sur I

√ Éléments de preuve.

Que dire de l'existence des limites de fonctions croissantes?

Corollaire 8.3.8

Soit I un intervalle ouvert, et f convexe sur I. Alors f est continue sur I.

Remarque 8.3.9

Le théorème et son corollaire sont faux si on ne suppose pas que I est ouvert.

Proposition 8.3.10

Soit I un intervalle ouvert et $x_0 \in I$. Soit $f: I \to \mathbb{R}$ une fonction convexe sur I. Puisque f est dérivable à gauche et à droite, sa courbe admet une tangente à gauche et une tangente à droite en x_0 . Alors la courbe de f est au-dessus de sa tangente à gauche, et au-dessus de sa tangente à droite.

La croissance des taux d'accroissement permet de comparer la tangente (à droite ou à gauche) en un point et les cordes issues du même point.

Remarque 8.3.11

Les résultats ci-dessus se transcrivent évidemment au cas de fonctions concaves. Dans ce cas, les dérivées à droite et à gauche sont décroissantes.

III.4 Caractérisation de la convexité pour les fonctions \mathcal{D}^1 ou \mathcal{D}^2

Afin de pouvoir dès à présent utiliser des propriétés de convexité pour obtenir des inégalités, on donne dès maintenant le théorème suivant, permettant d'avoir un critère simple et pratique pour prouver la convexité d'une fonction.

Théorème 8.3.12 (Caractérisation des fonctions convexes dérivables)

Soit I un intervalle ouvert, et $f:I\to\mathbb{R}$ une fonction dérivable sur I. Les propriétés suivantes sont équivalentes :

- (i) f est convexe;
- (ii) f' est croissante;
- (iii) la courbe de f se trouve au-dessus de toutes ses tangentes.

- - $(i) \Longrightarrow (ii)$ provient du lemme des pentes.
 - $(ii) \Longrightarrow (iii)$ provient du théorème des accroissements finis.
 - $(iii) \Longrightarrow (i)$: Considérer la tangente en un point intermédiaire; elle est sous la corde (pourquoi)?

 \triangleright

Corollaire 8.3.13 (Caractérisation des fonctions convexes deux fois dérivables)

Soit I un intervalle ouvert, et $f: I \to \mathbb{R}$ une fonction deux fois dérivable sur I. Alors f est convexe si et seulement si pour tout $x \in I$, $f''(x) \ge 0$.

Exemples 8.3.14

- 1. $x \mapsto e^x$ est convexe sur \mathbb{R} ;
- 2. $x \mapsto \ln x$ est concave sur \mathbb{R}^*_{\perp} ;
- 3. $x \mapsto \sin x$ est concave sur chacun des intervalles $]2k\pi, (2k+1)\pi[$ et convexe sur chacun des intervalles $](2k-1)\pi, 2k\pi[$, $k \in \mathbb{Z}$.

On déduit de ces exemples les inégalités suivantes, obtenues en considérant la position des courbes par rapport à leur tangente en 0 :

Exemples 8.3.15

- 1. $\forall x \in]-1, +\infty[, \ln(1+x) \le x;$
- 2. $\forall x \in \mathbb{R}, e^x \geqslant x+1$;
- 3. $\forall x \ge 0$, $\sin x \le x$ et $\forall x \le 0$, $\sin x \ge x$.

IV Étude d'une fonction

Dans ce paragraphe, nous voyons comment appliquer les méthodes calculatoires développées dans début de ce chapitre à l'étude des fonctions. Le lien est bien sûr fait par le résultat que vous connaissez bien reliant le signe de la dérivée et les variations de la fonction. Avant d'aborder ce point, nous faisons quelques rappels sur le graphe d'une fonction et les symétries.

IV.1 Graphe

Nous rappelons que le domaine de définition d'une fonction f est le sous-ensemble D_f (de \mathbb{R} ici) constitué de l'ensemble des éléments x tels que f(x) soit défini.

Dans le cas d'une fonction de \mathbb{R} dans \mathbb{R} , le graphe, tel que nous l'avons défini dans un chapitre antérieur, correspond au sous-ensemble de \mathbb{R}^2 constitué des éléments (x, f(x)), pour $x \in D_f$.

Le graphe permet d'avoir une idée générale de la fonction étudiée. Un graphe précis (par approximations et interpolation à partir d'un grand nombre de points, obtenus par exemple par des expériences) permet d'obtenir facilement une première approximation de solutions de certaines équations ou inéquations.

Certaines opérations simples sur les fonctions se traduisent facilement sur le graphe, comme la composition à la source ou à l'arrivée par $x \mapsto ax$ ou $x \mapsto x - a$.

Une autre opération se traduisant élégamment sur les graphes est la réciproque des fonctions bijectives.

Proposition 8.4.1 (Graphe d'une fonction réciproque, figure 8.1)

Soit $I, J \subset \mathbb{R}$, et $f: I \longrightarrow J$ une bijection. Alors le graphe de f^{-1} est l'image du graphe de f par la symétrie d'axe D, où D est la droite d'équation y = x.

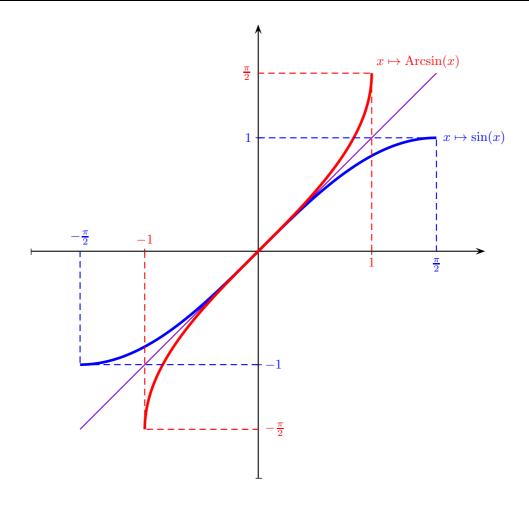


FIGURE 8.1 – Graphe d'une fonction réciproque

Remarque 8.4.2

Interprétez géométriquement la formule de dérivation des réciproques.

IV.2 Symétries d'une fonction

Définition 8.4.3 (fonctions paires, impaires, périodiques)

Soit f une fonction de domaine de définition $D_f \subset \mathbb{R}$, à valeurs dans \mathbb{R} .

• On dit que f est paire si D_f est symétrique par rapport à 0 (donc $D_f = -D_f = \{-x, x \in D_f\}$), et

$$\forall x \in D_f, \quad f(-x) = f(x).$$

 $\bullet\,$ On dit que f est impaire si D_f est symétrique par rapport à 0 et

$$\forall x \in D_f, \quad f(-x) = -f(x).$$

 \bullet On dit que f est périodique de période T>0 si $D_f+T=D_f$ et

$$\forall x \in D_f, \ f(x+T) = f(x).$$

Remarque 8.4.4

Comment se traduit la parité et l'imparité sur le graphe?

Définition 8.4.5 (période minimale)

Soit f une fonction périodique, et soit \mathcal{T}^+ l'ensemble des périodes strictement positives de f. Si \mathcal{T}^+ admet un minimum T, alors T est appelée période minimale de f, ou plus petite période de f.

Exemples 8.4.6

- 1. cos et sin sont périodiques de période 2π . Il s'agit de la période minimale.
- 2. tan est également périodique de période 2π , mais ce n'est pas la période minimale. La période minimale est π .
- 3. Il existe des fonctions périodiques n'admettant pas de période minimale, par exemple $\mathbb{1}_{\mathbb{Q}}$. Quelles sont ses périodes?

On peut montrer plus généralement qu'une fonction périodique sans période minimale admet un ensemble de périodes dense dans \mathbb{R} . Ce résultat est basé sur la description des sous-groupes de \mathbb{R} , que nous aurons l'occasion d'évoquer dans un chapitre ultérieur.

IV.3 Monotonie

On rappelle que f est croissante si elle préserve la relation d'ordre large : pour tout $x, y \in D_f$,

$$x \leqslant y \Longrightarrow f(x) \leqslant f(y).$$

De même, f est strictement croissante si elle préserve la relation d'ordre stricte. On définit de même la décroissance et la stricte décroissante, par inversion de la relation d'ordre

On dit qu'une fonction est (strictement) monotone si elle est (strictement) croissante ou (strictement) décroissante.

Avertissement 8.4.7

Si f est croissante (ou décroissante) sur deux intervalles I et J, elle n'est pas nécessairement croissante sur l'union $I \cup J$. Considérer par exemple $f: x \mapsto \frac{1}{x}$ et $I =]-\infty, 0[, J =]0, +\infty[$.

La monotonie suit une règle ressemblant à la règle des signes :

Proposition 8.4.8 (monotonie et composition)

Soit f et g deux fonctions définies sur les sous-ensembles E et F de \mathbb{R} , et telles que $f(E) \subset F$. Alors:

- Si f et g sont croissantes, ou si f et g sont décroissantes, alors $g \circ f$ est croissante;
- Si f et croissante et g décroissante, ou si f est décroissante et g croissante, alors g o f est décroissante.

De plus, si la monotonie de f et g est stricte, celle de $g \circ f$ l'est également.

d Éléments de preuve.

Pas dur en utilisant la définition : partir de x < y.

Remarque 8.4.9

Cette règle des monotonies composées est très utile en pratique, et permet souvent d'obtenir les variations de certaines fonctions de façon beaucoup plus élégante, efficace et rapide que par étude de fonction. C'est le premier réflexe à avoir lorsqu'on vous demande les variations d'une fonction composée.

Proposition 8.4.10 (monotonie et réciproque)

Soit $f: I \longrightarrow J$ une fonction bijective réelle définie sur un sous-ensemble I de \mathbb{R} . Si f est monotone (nécessairement strictement), alors f^{-1} est monotone, de même sens de monotonie que f.

Par la définition, en montrant la contraposée.

Proposition 8.4.11 (monotonie et injectivité)

Une fonction strictement monotone sur un sous-ensemble de \mathbb{R} est injective sur ce sous-ensemble.

IV.4 Variations des fonctions, extremum

Nous commençons par un rappel de certaines propriétés (admises pour le moment) permettant une étude efficace d'une fonction d'une variable, puis nous rappelons le schéma général d'étude d'une fonction.

Théorème 8.4.12 (Caractérisation des fonctions croissantes dérivables)

Soit $f: X \to \mathbb{R}$, et I un intervalle tel que f est dérivable sur I. Alors :

- 1. f est croissante sur I si et seulement si pour tout $x \in I$, $f'(x) \ge 0$.
- 2. f est constante sur I ssi f' = 0 sur I.
- 3. f est strictement croissante sur I si et seulement si $f' \ge 0$, et que pour tout $(a,b) \in I^2$ tel que a < b, f' n'est pas nulle sur]a,b[(cela revient à dire que l'ensemble des zéros de f' est d'intérieur vide).
- 4. Énoncés similaires pour la décroissance.
- - 1. Pour la réciproque, utiliser l'IAF.
 - 2. f est constante équivaut ssi f est croissante et décroissante.
 - 3. La croissance (stricte) implique déjà $f' \ge 0$; Si f' s'annulait sur tout un]a,b[, f serait constante sur cet]a,b[donc pas strictement monotone. Réciproquement, si f était monotone, mais pas strictement, elle serait constante sur tout un intervalle [a,b], avec a < b, et f' serait nulle sur cet intervalle.

 \triangleright

Méthode 8.4.13 (Étude des variations d'une fonction)

Pour étudier les variations d'une fonction, on étudiera le signe de f. On pourra donc dresser un tableau de variation, consignant le signe de f' suivant les valeurs de x, et le sens de variation de f qu'on en déduit.

Exemple 8.4.14

Étudier les variations de $f: x \mapsto x \ln(x)$ sur \mathbb{R}_+^* . En déduire l'existence et la valeur du minimum de f sur \mathbb{R}_+^* .

Définition 8.4.15 (Maximum, maximum local)

Soit f défini sur X.

- On dit que f admet en x un maximum si pour tout $y \in X$, $f(y) \leq f(x)$.
- Ce maximum est strict s'il n'est atteint en aucun autre y (donc f(y) < f(x) pour tout $y \neq x$)
- f admet en x un maximum local s'il existe un voisinage V de x tel que pour tout $y \in V$, $f(y) \leq f(x)$ (donc si $f_{|V|}$ admet un maximum en x).

Théorème 8.4.16 (condition nécessaire pour un extrémum)

Soit f dérivable sur un intervalle ouvert I. Si f admet en x un extremum local (minimum ou maximum), alors f'(x) = 0.

Considérer le signe du taux d'accroissement $\frac{f(y)-f(x)}{y-x}$ à gauche et à droite de x.

Cette condition n'est pas suffisante, comme le montre l'exemple de $x \mapsto x^3$ en 0.

Définition 8.4.17 (point critique)

Soit f une fonction dérivable sur un intervalle ouvert I, et $x \in I$. On dit que x est un point critique de f si f'(x) = 0.

Ainsi, une CN pour que f présente un extremum local en $x \in I$ (ouvert) est que x soit un point critique. Attention, c'est évidemment faux si I n'est pas ouvert (cas d'un extremum sur le bord).

IV.5 Comportement asymptotique

Le comportement à l'infini (comportement asymptotique) peut aussi aider à cerner l'allure de la courbe. On définit pour cela la notion de droite asymptote : il s'agit d'une droite qui approche d'aussi près qu'on veut une portion de la courbe lorsqu'on s'éloigne vers l'infini dans l'une des deux directions. Plus précisément :

Définition 8.4.18 (asymptotes)

- asymptote verticale en a: droite d'équation x=a en a telle que $\lim_{x\to a^+} f(x)=\pm\infty$;
- asymptotes en $+\infty$: la droite D d'équation y=ax+b est dite asymptote à la courbe $\mathcal C$ de f en $+\infty$ si

$$\lim_{x \to +\infty} (f(x) - (ax + b)) = 0.$$

On définit évidemment une notion similaire en $-\infty$.

Méthode 8.4.19 (Déterminer une droite asymptote (non verticale))

On verra plus tard comment obtenir les asymptotes à l'aide de développements asymptotiques. De façon plus élémentaire, si a existe, c'est nécessairement la limite de $\frac{f(x)}{x}$ lorsque x tend vers $+\infty$. le cas échéant, il ne reste qu'à vérifier que f(x) - ax tend vers une limite finie b.

Exemples 8.4.20

La courbe de $f: x \mapsto \frac{x^3 - 2x^2 + 1}{x^2 + 1}$ admet-elle une asymptote en $+\infty$?

On peut aussi définir des paraboles asymptotes, avec la condition $\lim_{x \to +\infty} f(x) - ax^2 - bx - c = 0$.

IV.6 Convexité

Enfin, l'allure de la courbe va dépendre fortement de « l'orientation de la courbure », c'est-à-dire des propriétés de convexité. Celles-ci seront obtenues par l'étude du signe de f''. On pourra donc consigner de signe de f'', conjointement au tableau de variations.

Définition 8.4.21 (point d'inflexion)

Un point d'inflexion de la courbe de f est un point en lequel f change de convexité.

Exemple 8.4.22

Étude de la fonction $x \mapsto e^{-x^2}$, avec les propriétés de convexité et les points d'inflexion.

Les fonctions usuelles

L'invention des logarithmes, en réduisant le temps passé aux calculs de quelques mois à quelques jours, double pour ainsi dire, la vie des astronomes.

(Pierre-Simon Laplace)

Le logarithme d'un sinus donné est le nombre qui a progressé arithmétiquement avec la même vitesse avec laquelle le rayon a diminué géométriquement jusqu'au sinus donné.

(John Napier, connu en France sous le nom de Jean Néper)

Comme pour trois sinus en proportion continue le carré du moyen est égal au produit des extrêmes, ainsi pour leurs logarithmes, le double du moyen est égal à la somme des deux extrêmes

(John Napier)

Ce chapitre est un catalogue des fonctions usuelles au programme de Math Sup. On y trouve bien entendu le logarithme et l'exponentielle, et les fonctions trigonométriques, mais également les réciproques (partielles) de celles-ci (Arcsin, Arccos et Arctan), et les fonctions hyperboliques (ch, sh, et th), mais sans leurs fonctions réciproques Argch, Argsh et Argth qui ne sont pas au programme.

I Prérequis

Afin de justifier correctement l'existence des fonctions usuelles, nous admettons quelques résultats d'analyse que nous verrons dans un chapitre ultérieur. On rappelle que si f est une fonction définie sur un intervalle I, une primitive de f est une application F telle que F' = f

Théorème 9.1.1 (CS d'existence d'une primitive, admis)

Toute fonction continue sur un intervalle I admet une primitive

Théorème 9.1.2 (Théorème fondamental de l'analyse, admis)

Soit f une fonction continue sur I = [a, b] et F une primitive de f sur [a, b]. Alors

$$\int_{a}^{b} f(t) dt = F(b) - F(a).$$

Théorème 9.1.3 (Unicité d'une primitive de valeur imposée)

Supposons de plus qu'on dispose de $x_0 \in I$ et $y_0 \in \mathbb{R}$. Alors il existe une unique primitive G de f telle que $G(x_0) = y_0$, donnée explicitement par

$$G(x) = y_0 + \int_{x_0}^x f(t) dt.$$

Se déduit des deux précédents, en remarquant que G est bien une primitive (la calculer en fonction de F par le théorème fondamental), et que 2 primitives sur un intervalle diffèrent d'une constante \triangleright

Théorème 9.1.4 (Théorème des valeurs intermédiaires, admis)

Soit f une fonction continue sur [a,b]. Alors toute valeur y_0 comprise entre f(a) et f(b) est dans l'image de f.

IIExponentielle, logarithme, puissances

Afin de contourner le problème de l'existence de l'exponentielle (admise au lycée), nous abordons les choses en sens inverse, en commençant par définir le logarithme.

II.1Logarithme

Définition 9.2.1 (fonction logarithme (népérien) ln, courbe figure 9.1)

La fonction ln est l'unique primitive de $x \mapsto \frac{1}{x}$ sur $]0, +\infty[$ s'annulant en 1

Ainsi, pour tout $x \in \mathbb{R}_+^*$,

$$\ln(x) = \int_1^x \frac{\mathrm{d}x}{x}.$$

Propriétés 9.2.2 (propriétés de ln)

Soit $f: x \mapsto \ln(x)$.

- Domaine de définition : $\ln : \mathbb{R}_+^* \to \mathbb{R}$.
- $\underline{\underline{D\acute{e}rivation: f\ est\ de\ classe\ \mathcal{C}^{\infty}}\ sur\]0, +\infty[,$

$$\forall x \in \mathbb{R}_+^*, \quad f'(x) = \frac{1}{x}, \qquad \forall x \in \mathbb{R}_+^*, \quad \forall n \in \mathbb{N}^*, \quad f^{(n)}(x) = \frac{(-1)^{n-1}(n-1)!}{x^n}.$$

- Variations: ln est croissante sur son domaine.
- Propriétés de convexité : ln est concave sur \mathbb{R}_+^*
- Inégalité classique : $\forall x \in]-1, \infty[, \ln(1+x) \leq x]$
- Propriété remarquable : si a > 0 et b > 0, $\ln(ab) = \ln(a) + \ln(b)$, $\ln\left(\frac{a}{b}\right) = \ln(a) \ln(b)$. En particulier, $\ln(\frac{1}{b}) = -\ln(b)$.
- Valeurs remarquables et limites :
 - $* \ln(1) = 0$
 - * ln(e) = 1 (c'est la définition de e)

 - $* \lim_{x \to 0^+} \ln(x) = -\infty$ $* \lim_{x \to +\infty} \ln(x) = +\infty.$
- <u>Limite remarquable</u>: $\lim_{x\to 0} \frac{\ln(1+x)}{r} = 1$.

- Propriété remarquable : considérer $x \mapsto \ln(ax)$ dont la dérivée est $\frac{1}{x}$. Ainsi, $x \mapsto \ln(x)$ et $x \mapsto \ln(ax)$ diffèrent d'une constante. Évaluer en un point bien choisi.
- Limite en $+\infty$: elle existe dans $\mathbb{R} \cup \{+\infty\}$. Considérer $\ln(2x) \ln(x)$ pour justifier qu'elle ne peut pas être finie.
- Limite en 0: Se ramener en $+\infty$.
- Limite remarquable : c'est un taux d'accroissement.

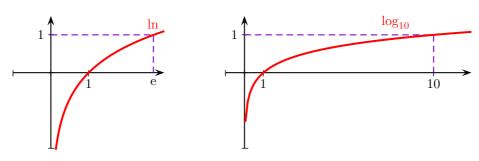


FIGURE 9.1 – Graphes de ln et \log_{10}

II.2 Exponentielle réelle

Lemme 9.2.3 (Version faible du théorème de la bijection continue)

Soit a < b dans $\overline{\mathbb{R}}$, et I =]a, b[. Soit $f : I \to \mathbb{R}$ une fonction continue strictement croissante. On note $\alpha = \lim_{x \to a} f(x)$ et $\beta = \lim_{x \to b} f(x)$, qui existent par croissance de f. Alors f est bijective de I sur $]\alpha, \beta[$ et

$$\lim_{y \to a} f^{-1}(y) = a \qquad et \qquad \lim_{y \to \beta} f^{-1}(y) = b.$$

L'injectivité découle de la croissance stricte, la surjectivité provient du TVI. Comme f^{-1} est strictement monotone, les limites existent, et, si on les note a' et b', $\text{Im}(f^{-1}) \subset]a',b'[$, et doivent être adhérentes à]a,b[.

Lemme 9.2.4 (Bijection induite par le ln)

Le logarithme se restreint en une bijection de \mathbb{R}_+^* sur \mathbb{R} .

Définition 9.2.5 (fonction exponentielle exp, courbe figure 9.2)

La fonction exp est la réciproque de ln (bijective de \mathbb{R}_+^* sur \mathbb{R}). Elle est indifféremment notée $x \mapsto \exp(x)$ ou $x \mapsto e^x$. On justifiera cette notation plus loin. En attendant, on préfère la première.

Propriétés 9.2.6 (propriétés de la fonction exp)

Soit $f: x \mapsto \exp(x)$.

- Domaine de définition : $\exp : \mathbb{R} \to \mathbb{R}_+^*$.
- <u>Dérivation</u>: f est de classe C^{∞} sur \mathbb{R} ,

$$\forall x \in \mathbb{R}, \ f'(x) = \exp(x), \quad \forall x \in \mathbb{R}, \ \forall n \in \mathbb{N}^*, \ f^{(n)}(x) = \exp(x).$$

- <u>Variations</u>: exp est croissante sur \mathbb{R} .
- Propriétés de convexité : exp est convexe sur $\mathbb R$
- Inégalité classique : $\forall x \in \mathbb{R}, \exp(x) \geqslant x + 1$
- Valeurs remarquables et limites :
 - $* \exp(0) = 1$
 - $* \lim_{x \to -\infty} \exp(x) = 0$
 - $* \lim_{x \to +\infty} \exp(x) = +\infty.$
 - * On définit le réel e par $e = \exp(1)$.
- Limite remarquable: $\lim_{x\to 0} \frac{\exp(x)-1}{x} = 1$.
- Autres propriétés remarquables :
 - $* \exp(a+b) = \exp(a)\exp(b)$
 - * $\ln(\exp(x)) = x$, en particulier $\ln(e) = 1$.
 - $* \exp(\ln x) = x$

- Dérivée : utiliser la formule de dérivation des réciproques
- Inégalité classique : par convexité
- Limites en $+\infty$ et $-\infty$: se déduisent des limites du logarithme.
- Limite remarquable : c'est un taux d'accroissement
- Autres propriétés remarquables : se ramener au logarithme. Les dernières ne font qu'exprimer la définition.

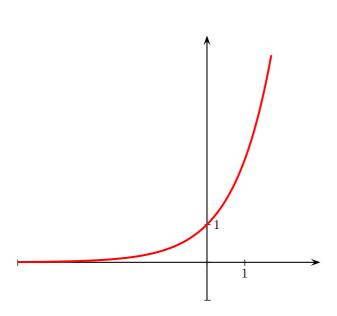


FIGURE 9.2 – Courbe de la fonction exp

II.3 Fonctions puissances

Définition 9.2.7 (puissance, ou exponentiation)

Pour tout x > 0 et tout $y \in \mathbb{R}$, on définit $x^y = \exp(y \ln x)$.

 \triangleright

Remarque 9.2.8

- Si $y = n \in \mathbb{N}$, cela correspond à la puissance x^n obtenue par itération du produit. Remarquez que dans ce cas (et uniquement dans ce cas), on peut étendre, par itération du produit, la définition de la puissance x^y pour $x \leq 0$, mais prenez garde à ne pas écrire cette puissance sous forme exponentielle : cela n'a pas de sens.
- Si y = -1, on retrouver $x^{-1} = \frac{1}{x}$, et plus généralement, pour y = -n, $n \in \mathbb{N}^*$, on retrouver $\frac{1}{x^n}$, c'est-à-dire l'itération du produit sur x^{-1} .

On pose aussi par convention:

Convention 9.2.9 (puissances de 0)

Soit $y \in \mathbb{R}^+$, on pose :

$$0^y = \begin{cases} 0 & \text{si } y > 0 \\ 1 & \text{si } y = 0 \end{cases}$$

Il s'agit du prolongement par continuité de $x\mapsto x^y$, à y fixé.

On a alors les règles suivantes :

Propriétés 9.2.10 (règles d'exponentiation)

Soit $(x, y) \in (\mathbb{R}_+^*)^2$, et $(a, b) \in \mathbb{R}^2$.

- $\exp(x) = e^x$
- $\ln(x^a) = a \ln x$.
- $\bullet \ x^{a+b} = x^a x^b$
- $(x^a)^b = x^{ab}$
- $\bullet \ x^{-a} = \frac{1}{x^a}$
- $Si \ n \in \mathbb{N}^*, \ x^{\frac{1}{n}} = \sqrt[n]{x}$
- $\bullet \ x^a y^a = (xy)^a$

Cela découle des règles usuelles vérifiées par le logarithme et l'exponentielle.

Définition 9.2.11 (Fonctions puissance)

Les fonctions puissance sont les fonctions $x \mapsto x^a$, $a \in \mathbb{R}$

Proposition 9.2.12 (Domaine de définition des fonctions puissance)

- $Si\ a \in \mathbb{R}_+ \setminus \mathbb{N}, \ x \mapsto x^a \ est \ définie \ sur \ \mathbb{R}_+$
- $Si\ a \in \mathbb{R}_- \setminus \mathbb{Z}, \ x \mapsto x^a \ est \ définie \ sur \ \mathbb{R}_+^*$
- Si $a \in \mathbb{N}$, $x \mapsto x^n$ est définie sur \mathbb{R} (par itération du produit)
- $Si\ a \in \mathbb{Z}_{-}^{*}$, $x \mapsto x^{n}$ est définie $sur\ \mathbb{R}^{*}$ (par itération du produit par l'inverse de x).

Proposition 9.2.13 (Dérivation des fonctions puissance)

• La fonction $f_a: x \mapsto x^a$ est dérivable sur \mathbb{R}_+^* , et

$$\forall x \in \mathbb{R}_+^*, \quad f_a'(x) = ax^{a-1}.$$

- Si $a \ge 1$, cette propriété s'étend à \mathbb{R}_+ .
- $Si \ a \in \mathbb{N}^*$, cette propriété s'étend à \mathbb{R} .
- $Si \ a \in \mathbb{Z}_{-}$, cette propriété s'étend à \mathbb{R}^* .

II.4 Exponentielle et logarithme de base b

Définition 9.2.14 (Exponentielle de base b)

Soit b>0. L'exponentielle de base b est l'application définie sur $\mathbb R$ par :

$$\exp_b(x) = b^x$$

Proposition 9.2.15 (Dérivée et bijectivité)

• La fonction \exp_b est dérivable sur \mathbb{R} , et

$$\forall x \in \mathbb{R}, \ \exp_b'(x) = \ln(b) \exp_b(x).$$

• La fonction \exp_b se corestreint en une bijection de \mathbb{R} dans \mathbb{R}_+^* .

Définition 9.2.16 (logarithme de base b > 1)

Soit b > 1, le logarithme de base b est la fonction réciproque de $x \mapsto b^x$, bijective de \mathbb{R} dans \mathbb{R}_+^* . Elle est notée \log_b . Ainsi, pour tout $x \in \mathbb{R}$, $\log_b(b^x) = x$, et en particulier, $\log_b(b) = 1$.

Par exemple, on utilise beaucoup en physique le logarithme en base 10, défini par la relation $\log_{10}(10^x) = x$. Le logarithme en base 10 est souvent notée simplement log au lieu de \log_{10} . Il n'est pas très utilisé en mathématiques.

En informatique, c'est le logarithme en base 2 qui est le plus fréquemment utilisé. On le note souvent lg.

Proposition 9.2.17 (expression de \log_b en fonction de \ln)

Pour tout x > 0, $\log_b(x) = \frac{\ln x}{\ln b}$. En particulier, on en déduit que

$$\log_b'(x) = \frac{1}{x \ln(b)}.$$

$$Vérifier b^{\frac{\ln(x)}{\ln(b)}} = x.$$

Ainsi, la courbe de \log_b (donnée en figure 9.1 pour b=10) s'obtient de celle de ln par affinité verticale de rapport $\frac{1}{\ln b}$. On en déduit notamment la croissance, la concavité, les limites, l'égalité $\log_b(1)=0$, ainsi que l'identité remarquable :

$$\log_b(xy) = \log_b(x) + \log_b(y).$$

Remarquons pour terminer que le logarithme népérien n'est rien d'autre que le logarithme en base e.

II.5 Croissances comparées

Les fonctions exponentielle, logarithme, puissances sont souvent utilisées pour donner des ordres de grandeur au voisinage de 0 ou vers l'infini. Il est donc important de pouvoir comparer entre elles ces fonctions, au moins pour les très grandes ou très petites (en valeurs absolues) valeurs.

Théorème 9.2.18 (théorème des croissances comparées en $+\infty$)

- 1. Pour tout $\alpha > 0$, $\lim_{x \to +\infty} \frac{\ln x}{x^{\alpha}} = 0$.
- 2. Pour tout $\alpha \in \mathbb{R}$, $\lim_{x \to +\infty} \frac{x^{\alpha}}{e^x} = \lim_{x \to +\infty} x^{\alpha} e^{-x} = 0$.
- - Le cas de $\frac{\ln(x)}{x}$ s'obtient en majorant le logarithme : pour cela, exprimer le logarithme sous forme intégrale, et majorer dans l'intégrale $\frac{1}{t}$ par $\frac{1}{\sqrt{t}}$.
 - Pour $\frac{\ln(x)}{x^{\alpha}}$, se ramener au cas précédent, en posant $y=x^{\alpha}$. Pour $\frac{x^{\alpha}}{e^{x}}$ évacuer le cas $\alpha \leqslant 0$, puis poser $y=(e^{x})^{\frac{1}{\alpha}}$.

Ce théorème affirme que la fonction ln est très petite à l'infini (= « négligeable ») devant les fonctions puissances (d'exposant fixe), elles mêmes très petites devant l'exponentielle. Aussi dit-on souvent « l'exponentielle l'emporte sur les puissances, qui l'emportent sur le ln ».

Comme de plus, on peut facilement comparer les fonctions puissances entre elles, on peut écrire, pour synthétiser les croissances comparées :

Si
$$a < b$$
, au voisinage de $+\infty$, $\ln(x) \ll x^a \ll x^b \ll e^x$

Ici le signe ≪ est à lire « est négligeable devant » (prenez-le pour le moment au sens intuitif).

Dans les situations plus complexes, on peut toujours se ramener à ces situations, en écrivant les puissances sous forme exponentielle, et en étudiant la limite de l'exposant.

Exemple 9.2.19

- 1. Déterminer $\lim_{x\to +\infty} x^2 e^{-x}$
- 2. Déterminer $\lim_{x \to +\infty} x^{\ln x} e^{-\sqrt{x}}$
- 3. Déterminer $\lim_{x \to +\infty} x e^{-\sqrt{\ln x}}$

Théorème 9.2.20 (théorème des croissances comparées en 0)

Pour tout
$$\alpha > 0$$
, $\lim_{x \to 0^+} x^{\alpha} \ln x = 0$

Poser
$$y = \frac{1}{x}$$
 pour se ramener en $+\infty$.

Ainsi, $\ln x$ est « négligeable » devant les fonctions $x \mapsto \frac{1}{x^{\alpha}}$, ce qui signifie que ces dernières tendent vers l'infini beaucoup plus vite que ln.

IIIFonctions trigonométriques

Nous avons déjà défini et fait une étude sommaire des fonctions trigonométriques sin, cos et tan. Nous complétons un peu cette étude, notamment avec l'expression des dérivées, que nous n'avions pas données à ce moment-là.

III.1 Sinus

Propriétés 9.3.1 (propriétés de sin)

Soit $f: x \mapsto \sin x$.

- Domaine de définition : $\sin : \mathbb{R} \to [-1, 1]$.
- Symétries : $\sin est 2\pi$ -périodique et impaire.
- <u>Dérivation</u>: f est de classe C^{∞} sur \mathbb{R} ,

$$\forall x \in \mathbb{R}, \quad f'(x) = \cos(x) = \sin\left(x + \frac{\pi}{2}\right),$$

$$\forall x \in \mathbb{R}, \quad \forall N \in \mathbb{N}^*, \quad f^{(N)}(x) = \sin\left(x + \frac{N\pi}{2}\right) = \begin{cases} (-1)^n \sin(x) & \text{si } N = 2n\\ (-1)^n \cos(x) & \text{si } N = 2n + 1. \end{cases}$$

- <u>Variations</u>: Voir le chapitre sur les nombres complexes
- Valeurs particulières : Voir le chapitre sur les nombres complexes
- Limites: Pas de limite en $+\infty$ et $-\infty$.
- Propriétés de convexité :

sin est convexe sur les intervalles $[-\pi,0] + 2k\pi$ et concave sur les intervalles $[0,\pi] + 2k\pi$

- Inégalités classiques
 - $* \forall x \in \mathbb{R}_+, \sin x \leqslant x$
 - $* \forall x \in \mathbb{R}_-, \sin x \geqslant x$
 - * Ou de façon plus synthétique : $\forall x \in \mathbb{R}, |\sin(x)| \leq |x|$.
- * $\forall x \in [0, \frac{\pi}{2}], \quad \sin x \geqslant \frac{2x}{\pi}.$ <u>Limite remarquable</u>: $\lim_{x \to 0} \frac{\sin x}{x} = 1.$

Les inégalités classiques s'obtiennent par concavité sur $\left[0,\frac{\pi}{2}\right]$ (comparaison à la tangente en 0 ou aux cordes), qu'on prolonge facilement à R₊ pour la première. La limite remarquable peut être vue comme un taux d'accroissement. Mais comme on a établi la formule de dérivation du sinus à partir de cette limite, ce point de vue n'est pas satisfaisant. Se rappeler qu'on a obtenu cette limite par un argument géométrique, en comparant certaines aires dans le cercle trigonométrique.

III.2 Cosinus

Propriétés 9.3.2 (propriétés de cos)

Soit $f: x \mapsto \cos x$.

- Domaine de définition : \mathbb{R} .
- Symétries : \cos est 2π -périodique et paire.
- <u>Dérivation</u>: f est de classe C^{∞} sur \mathbb{R} ,

$$\forall x \in \mathbb{R}, \quad f'(x) = -\sin(x) = \cos\left(x + \frac{\pi}{2}\right),$$

$$\forall x \in \mathbb{R}, \quad \forall N \in \mathbb{N}^*, \quad f^{(N)}(x) = \cos\left(x + \frac{N\pi}{2}\right) = \begin{cases} (-1)^n \cos(x) & \text{si } N = 2n\\ (-1)^{n+1} \sin(x) & \text{si } N = 2n + 1. \end{cases}$$

- <u>Variations</u>: Voir le chapitre sur les nombres complexes
- Valeurs particulières : Voir le chapitre sur les nombres complexes
- Limites: Pas de limite en $+\infty$ et $-\infty$.
- <u>Limite remarquable</u>: $\lim_{x \to 0} \frac{1 \cos x}{x^2} = \frac{1}{2}$.

La limite remarquable se déduit de celle portant sur le sinus, en exprimant $1 - \cos(x)$ à l'aide de

III.3 **Tangente**

Propriétés 9.3.3 (propriétés de tan)

Soit $f: x \mapsto \tan x = \frac{\sin(x)}{\cos(x)}$

- Domaine de définition : tan : ℝ \ {π/2 + kπ, k ∈ ℤ} → ℝ.
 Symétries : tan est π-périodique et impaire.
- <u>Dérivation</u>: tan est de classe C^{∞} sur son domaine,

$$\forall x \in \mathbb{R}, \quad f'(x) = \frac{1}{\cos^2 x} = 1 + \tan^2(x)$$

- Variations: Voir le chapitre sur les nombres complexes
- Valeurs particulières : Voir le chapitre sur les nombres complexes
- Inégalités classiques :
 - * $\forall x \in [0, \frac{\pi}{2}[, \tan(x) \ge x \ (comparaison \ à \ la \ tangente \ en \ 0)$
 - * $\forall x \in]-\frac{\pi}{2},0], \tan(x) \leqslant x.$
 - * Ou de façon plus synthétique : $\forall x \in]-\frac{\pi}{2},\frac{\pi}{2}[, |\tan(x)|\geqslant |x|$
- Limite remarquable: $\lim_{x \to 0} \frac{\tan x}{r} = 1$

Les inégalités classiques sont des inégalités de convexité. La limite remarquable est un taux d'accroissement, ou découle de celle portant sur le sinus.

Les deux expressions de la dérivée de tan sont à connaître, car suivant les situations, on peut avoir intérêt à utiliser l'une ou l'autre.

Les courbes des fonctions trigonométriques sont représentées dans le chapitre sur les nombres complexes. Évidemment, parmi les propriétés importantes à bien connaître, il y a toutes les formules de trigonométrie déjà vues dans un chapitre antérieur.

IVRéciproques des fonctions trigonométriques

Les fonctions trigonométriques ne sont pas bijectives ni même injectives (elles ne peuvent pas l'être puisqu'elles sont périodiques). Même sur une période, on n'a pas l'injectivité (sauf pour la tangente). Mais en restreignant davantage le domaine de définition, on obtient des fonctions injectives, surjectives sur leur image. Cela permet de considérer leurs fonctions réciproques. Le graphe de ces fonctions s'obtient alors en utilisant la proposition 8.4.1, par symétrie par rapport à la première bissectrice.

IV.1Arctangente

La plus importante des fonctions réciproques de fonctions trigonométriques est probablement l'arctangente. Nous commençons donc par elle.

Définition 9.4.1 (arctangente, Arctan, courbe figure 9.3)

La fonction tan se restreint en une bijection de] $-\frac{\pi}{2}, \frac{\pi}{2}$ [sur \mathbb{R} .

La fonction arctangente, notée Arctan, est par définition la réciproque de tan restreinte à $]-\frac{\pi}{2},\frac{\pi}{2}[$

Le théorème de dérivation des fonctions réciproques permet d'obtenir le résultat important suivant :

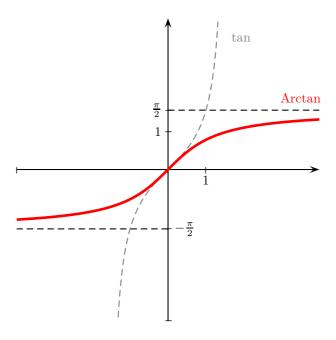


FIGURE 9.3 – Courbe de Arctan

Théorème 9.4.2 (Dérivée de Arctan)

La fonction $f = \text{Arctan } est \ définie \ et \ de \ classe \ \mathcal{C}^{\infty} \ sur \ \mathbb{R}, \ et$

$$\forall x \in \mathbb{R}, \quad f'(x) = \frac{1}{1+x^2}.$$

Utiliser la formule de dérivation des fonctions réciproques.

Ainsi, il faut toujours garder en tête les deux facettes de l'Arctan:

- définition comme fonction réciproque de la tangente
- l'arctangente se « dérive bien » (en une fraction rationnelle); autrement dit, Arctan est une primitive d'une fonction rationnelle simple (à retenir, on s'en sert très souvent dans des calculs d'intégrales)

Une fois l'expression de la dérivée obtenue, le reste de l'étude de la fonction Arctan est classique.

Propriétés 9.4.3 (propriétés de Arctan)

Soit $f: x \mapsto \operatorname{Arctan}(x)$

- <u>Domaine de définition</u>: Arctan: $\mathbb{R} \to]-\frac{\pi}{2}, \frac{\pi}{2}[.$
- Symétries: Arctan est impaire.
- <u>Variations</u>: Arctan est croissante sur \mathbb{R} .

• Inégalité classique : $\forall x \in \mathbb{R}, | Arctan(x) | \leq |x|$

- <u>Limite remarquables</u>: $\lim_{x \to 0} \frac{\operatorname{Arctan} x}{x} = 1$.
- Autres propriétés remarquables :
 - $* \forall x \in \mathbb{R}, \quad \tan(\operatorname{Arctan}(x)) = x$
 - * $\forall x \in]-\frac{\pi}{2}, \frac{\pi}{2}[, Arctan(tan(x)) = x]$

 - * $\forall x \in]-\frac{\pi}{2}+k\pi, \frac{\pi}{2}+k\pi[$, $\operatorname{Arctan}(\tan(x))=x-k\pi.$ * $\forall x \in \mathbb{R}^*, \operatorname{Arctan} x + \operatorname{Arctan} \frac{1}{x} = \varepsilon(x)\frac{\pi}{2}, \text{ où } \varepsilon(x) \text{ est le signe de } x.$ Arctangente et argument d'un complexe

Soit z = a + ib un nombre complexe, a et b étant réels et $a \neq 0$. Alors

$$\arg(z) \equiv \operatorname{Arctan} \frac{b}{a} [\pi].$$

L'égalité est valable modulo 2π si et seulement si a > 0.

Les limites découlent des asymptotes verticales de la tangente.

Encore une fois, les inégalités sont des inégalités de convexité. La limite remarquable est un taux d'accroissement. On peut aussi déduire ces propriétés des propriétés similaires de la tangente.

Les deux premiers points des propriétés remarquables ne font qu'exprimer la définition de l'arctangente. Le troisième ramène à l'intervalle $]-\frac{\pi}{2},\frac{\pi}{2}[$ pour pouvoir utiliser la définition. Le quatrième peut s'obtenir par dérivation de l'expression et simplification (c'est un procédé classique).

IV.2Arcsinus

Définition 9.4.4 (fonction arcsinus, Arcsin, courbe figure 9.4)

La fonction sin induit par restriction une bijection de $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ dans $\left[-1, 1\right]$. La réciproque de cette fonction est appelée arcsinus, notée Arcsin : $[-1,1] \rightarrow [-\frac{\pi}{2},\frac{\pi}{2}]$.

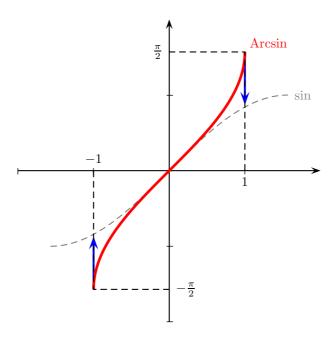


FIGURE 9.4 – Graphe de Arcsin

Comme pour la fonction Arctan, la première étape de l'étude est l'obtention de l'expression de la dérivée. Là encore, on obtient une dérivée très simple; ainsi, Arcsin est à voir comme primitive d'un certaine expression, qui n'est pas une fraction rationnelle cette fois, mais qu'on rencontre tout de même assez souvent dans des calculs d'intégrales.

Théorème 9.4.5 (Dérivée de Arcsin)

La fonction $f = Arcsin\ est\ de\ classe\ \mathcal{C}^{\infty}\ sur\]-1,1[,\ et$

$$\forall x \in]-1,1[, f'(x) = \frac{1}{\sqrt{1-x^2}}.$$

En revanche, elle n'est pas dérivable en -1 et 1, et la courbe présente en ces points des tangentes verticales.

Dérivée de fonctions réciproques.

Propriétés 9.4.6 (propriétés de Arcsin)

Soit $f: x \mapsto \operatorname{Arcsin}(x)$

- Domaine de définition : [-1,1].
- <u>Dérivation</u>: f est de classe C^{∞} sur]-1,1[, et : $\forall x \in]-1,1[$, $f'(x)=\frac{1}{\sqrt{1-x^2}}$.
- Symétries : Arcsin est impaire.
- <u>Variations</u>: Arcsin est croissante sur [-1, 1].
- Valeurs remarquables : voir tableau figure 9.6
- <u>Limite remarquables</u>: $\lim_{x \to 0} \frac{\operatorname{Arcsin} x}{x} = 1$.
- Autres propriétés remarquables :
 - $* \forall x \in [-1, 1], \quad \sin(\operatorname{Arcsin}(x)) = x$
 - * $\forall x \in]-\frac{\pi}{2}, \frac{\pi}{2}[, \operatorname{Arcsin}(\sin(x)) = x]$
 - * $\forall x \in]\frac{\pi}{2}, \frac{3\pi}{2}[, \operatorname{Arcsin}(\sin(x)) = \pi x]$
 - * Les autres valeurs de Arcsin(sin(x)) s'obtiennent en se ramenant à un de ces deux intervalles par périodicité, comme dans le cas de l'arctangente.

C'est toujours un peu pareil. Pour les derniers points, on peut toujours se ramener à $\left[-\frac{\pi}{2}, \frac{3\pi}{2}\right]$ par périodicité. Sur la deuxième moitié de l'intervalle, il faut utiliser la symétrie par $\pi - x$ pour se ramener au bon intervalle.

IV.3 Arccosinus

L'étude de l'arccosinus, réciproque de cos sur un intervalle adéquat, est très similaire à celle de l'arcsin.

Définition 9.4.7 (fonction arccosinus, Arccos, courbe figure 9.5)

La fonction cos induit par restriction une bijection de $[0, \pi]$ dans [-1, 1]. La réciproque de cette fonction est appelée arccosinus, notée Arccos: $[-1, 1] \rightarrow [0, \pi]$.

De par les symétries existant entre sin et cos, les courbes de Arccos et Arcsin peuvent se déduire l'une de l'autre par des symétries (qu'on explicite dans les propriétés ci-dessous). On obtient donc sans surprise :

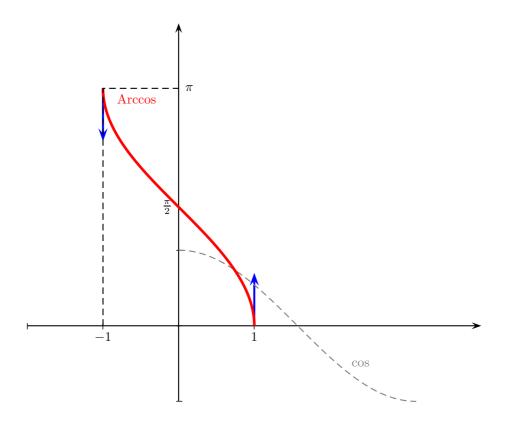


FIGURE 9.5 – Graphe de Arccos

Théorème 9.4.8 (Dérivée de Arccos)

La fonction $f = \text{Arccos est de classe } C^{\infty} \text{ sur }] - 1, 1[, \text{ et }$

$$\forall x \in]-1,1[, f'(x) = -\frac{1}{\sqrt{1-x^2}}.$$

En revanche, elle n'est pas dérivable en -1 et 1, et la courbe présente en ces points des tangentes verticales.

Dérivée de fonctions réciproques.

Propriétés 9.4.9 (propriétés de Arccos)

Soit $f: x \mapsto \operatorname{Arccos}(x)$

- Domaine de définition : [-1, 1].
- <u>Dérivation</u>: f est de classe C^{∞} sur]-1,1[, $et: \forall x \in]-1,1[$, $f'(x)=-\frac{1}{\sqrt{1-x^2}}$.
- <u>Variations</u>: Arccos est décroissante sur [-1, 1].
- Valeurs remarquables : voir tableau figure 9.6
- Autres propriétés remarquables :
 - * $\forall x \in [-1, 1], \quad \cos(\operatorname{Arccos}(x)) = x$
 - * $\forall x \in [0, \pi], \ \operatorname{Arccos}(\cos(x)) = x$
 - * $\forall x \in [-\pi, 0], \operatorname{Arccos}(\cos(x)) = -x$
 - * Les autres valeurs de Arccos(cos(x)) s'obtiennent en se ramenant à un de ces deux intervalles par périodicité.
 - * $\operatorname{Arccos}(x) + \operatorname{Arcsin}(x) = \frac{\pi}{2} \ (sym\acute{e}trie\ entre\ \operatorname{Arccos}\ et\ \operatorname{Arcsin})$

 \triangleright

	0	$\frac{1}{2}$	$\frac{\sqrt{3}}{3}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	$\sqrt{3}$
Arctan	0		$\frac{\pi}{6}$			$\frac{\pi}{4}$	$\frac{\pi}{3}$
Arcsin	0	$\frac{\pi}{6}$		$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	
Arccos	$\frac{\pi}{2}$	$\frac{\pi}{3}$		$\frac{\pi}{4}$	$\frac{\pi}{6}$	0	

FIGURE 9.6 – Tableau des valeurs particulières de Arctan, Arcsin, Arccos.

V Fonctions hyperboliques

D'autres fonctions qu'on rencontre fréquemment en physique, et qui sont bien utiles en mathématiques, notamment pour le calcul de certaines intégrales, sont les fonctions hyperboliques, qui sont obtenues à l'aide de l'exponentielle réelle par des formules ressemblant aux formules d'Euler, liant les fonctions trigonométriques et l'exponentielle complexe. Cette analogie forte avec les fonctions trigonométriques motive la terminologie utilisée (sinus hyperbolique, cosinus hyperbolique...), et explique pourquoi la plupart des formules de trigonométrie ont un analogue hyperbolique.

Définition 9.5.1 (sinus, cosinus, tangente hyperboliques, figure 9.7)

Les fonctions « sinus hyperbolique », « cosinus hyperbolique » et « tangente hyperbolique », notées respectivement sh, ch et th, sont les fonctions définies par les formules :

$$\forall x \in \mathbb{R}, \quad \operatorname{sh}(x) = \frac{e^x - e^{-x}}{2}, \qquad \operatorname{ch}(x) = \frac{e^x + e^{-x}}{2}, \qquad \operatorname{th}(x) = \frac{\operatorname{sh}(x)}{\operatorname{ch}(x)}.$$

Vous pouvez constater que sh et ch sont en fait, de par leur définition même, la partie impaire et la partie paire de la fonction exponentielle. Ainsi, sh est impaire, ch est paire, et sh + ch = exp.

Propriétés 9.5.2 (propriétés de sh)

Soit $f: x \mapsto \operatorname{sh}(x)$

- Domaine de définition : \mathbb{R} .
- <u>Dérivation</u>: f est de classe C^{∞} sur \mathbb{R} , et :

$$\forall x \in \mathbb{R}, \quad f'(x) = \operatorname{ch}(x), \qquad f^{(n)}(x) = \begin{cases} \operatorname{ch}(x) & \text{si } n \text{ impair} \\ \operatorname{sh}(x) & \text{si } n \text{ pair} \end{cases}$$

- Symétries : sh est impaire.
- <u>Variations</u>: sh est croissante sur \mathbb{R} .
- Valeurs remarquables : sh(0) = 0
- Inégalités classiques :
 - * $\forall x \in \mathbb{R}_+$, $\operatorname{sh}(x) \geqslant x$ (comparaison à la tangente en 0)
 - * $\forall x \in \mathbb{R}_{-}, \ \operatorname{sh}(x) \leqslant x \ (idem)$
- <u>Limite remarquables</u>: $\lim_{x\to 0} \frac{\sinh(x)}{x} = 1$.

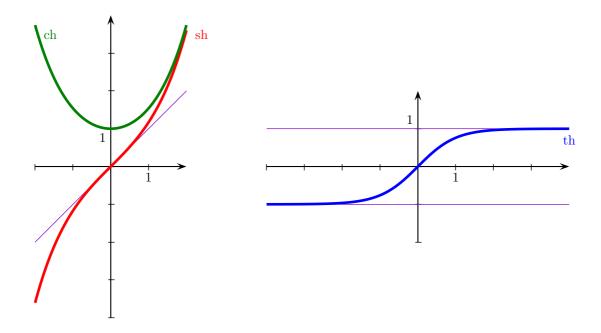


Figure 9.7 – Graphes des fonctions hyperboliques

Propriétés 9.5.3 (propriétés de ch)

Soit $f: x \mapsto \operatorname{ch}(x)$

- Domaine de définition : \mathbb{R} .
- <u>Dérivation</u>: f est de classe C^{∞} sur \mathbb{R} , et :

$$\forall x \in \mathbb{R}, \quad f'(x) = \operatorname{sh}(x), \qquad f^{(n)}(x) = \begin{cases} \operatorname{sh}(x) & \text{si } n \text{ impair} \\ \operatorname{ch}(x) & \text{si } n \text{ pair} \end{cases}$$

- $\bullet \ Sym\'etries : {\it ch} \ est \ paire.$
- <u>Variations</u>: ch est décroissante sur \mathbb{R}_- et croissante sur \mathbb{R}_+ .
- Valeurs remarquables : ch(0) = 1
- <u>Limite remarquables</u>: $\lim_{x\to 0} \frac{\operatorname{ch}(x) 1}{x^2} = \frac{1}{2}$.

Sans difficulté, toujours pareil.

Nous ne donnons qu'une formule de trigonométrie hyperbolique, les autres peuvent être retrouvées à l'aide des exponentielles (par exemple des formules pour sh(a + b), sh(a) + sh(b) etc).

Théorème 9.5.4 (identité remarquable)

Pour tout $x \in \mathbb{R}$, $\operatorname{ch}^2(x) - \operatorname{sh}^2(x) = 1$.

Factoriser cette différence de deux carrés.

Propriétés 9.5.5 (propriétés de th)

Soit $f: x \mapsto \operatorname{th}(x)$

- Domaine de définition : \mathbb{R} .
- <u>Dérivation</u>: f est de classe C^{∞} sur \mathbb{R} , et : $\forall x \in \mathbb{R}$, $f'(x) = 1 \operatorname{th}^2(x) = \frac{1}{\operatorname{ch}^2(x)}$
- Symétries : th est impaire.
- <u>Variations</u>: th est croissante sur \mathbb{R} .
- <u>Valeurs remarquables</u>: th(0) = 0, $\lim_{x \to -\infty} th(x) = -1$, $\lim_{x \to +\infty} th(x) = 1$.
- <u>Limite remarquables</u>: $\lim_{x\to 0} \frac{\operatorname{th}(x)}{x} = 1$.

Note Historique 9.5.6

- Le premier à introduire les fonctions hyperboliques est le mathématicien et physicien italien Jacopo Riccati en 1760, dans le but d'exprimer l'aire sous une hyperbole (d'où le nom donné à ces fonctions). Ses définitions sont purement géométriques, et ne font pas référence à l'exponentielle.
- C'est Jean-Henri Lambert vers 1770 qui exprime sh et ch à l'aide de la fonction exponentielle, et qui en fait une étude complète.

VI Réciproques des fonctions hyperboliques (HP)

Les réciproques des fonctions hyperboliques sont hors programme. Signalons tout de même que :

- sh est bijective de $\mathbb R$ dans $\mathbb R$, et sa réciproque est appelée « argument sinus hyperbolique » et notée Argsh.
- ch est bijective de \mathbb{R}_+ sur $[1, +\infty[$, et sa réciproque, définie sur $[1, +\infty[$, est appelée « argument cosinus hyperbolique » et notée Argch
- th est bijective de \mathbb{R} sur]-1,1[, et sa réciproque, définie sur]-1,1[, est appelée « argument tangente hyperbolique », et notée Argth.

Une propriété remarquable des fonctions Argsh, Argch et Argth est qu'elles peuvent s'exprimer explicitement à l'aide des fonctions ln et $\sqrt{\ }$.

Soit en utilisant ces expressions explicites, soit en utilisant le théorème de dérivation des fonctions réciproques, on obtient la dérivabilité de ces fonctions (sauf Argch en 1) et les expressions

$$\forall x \in \mathbb{R}, \text{ Argsh}'(x) = \frac{1}{\sqrt{x^2 + 1}} \qquad \forall x \in]1, +\infty[, \text{ Argch}'(x) = \frac{1}{\sqrt{x^2 - 1}} \qquad \forall x \in]-1, 1[, \text{ Argth}'(x) = \frac{1}{1 - x^2}.$$

VII Tableau des dérivées des fonctions usuelles

Le tableau 9.8 rappelle l'ensemble des dérivées à bien connaître. Nous n'y incluons pas les dérivées des réciproques des fonctions hyperboliques (HP).

f(x)	domaine de définition	domaine de dérivabilité	f'(x)
$c\ (c\in\mathbb{R})$	\mathbb{R}	\mathbb{R}	0
$x^n \ (n \in \mathbb{N}^*)$	\mathbb{R}	\mathbb{R}	nx^{n-1}
$x^n \ (n \in \mathbb{Z}^*)$	\mathbb{R}^*	\mathbb{R}^*	nx^{n-1}
$x^{\alpha} \ (\alpha \in]1, +\infty[\backslash \mathbb{N})$	\mathbb{R}_+	\mathbb{R}_+	$\alpha x^{\alpha-1}$
$x^{\alpha} \ (\ \alpha \in]0,1[)$	\mathbb{R}_+	\mathbb{R}_+^*	$\alpha x^{\alpha-1}$
cas particulier \sqrt{x}	\mathbb{R}_+	\mathbb{R}_+^*	$\frac{1}{2\sqrt{x}}$
$x^{\alpha} \ (a \in \mathbb{R}_{-}^{*})$	\mathbb{R}_+^*	\mathbb{R}_+^*	$\alpha x^{\alpha-1}$
e^x	\mathbb{R}	\mathbb{R}	e^x
ln(x)	\mathbb{R}_+^*	\mathbb{R}_+^*	$\frac{1}{x}$
$\log_b(x) \ (b \in \mathbb{R}_+^*)$	R* ₊	\mathbb{R}_+^*	$\frac{1}{x \ln b}$
$\sin(x)$	\mathbb{R}	$\mathbb R$	$\cos(x)$
$\cos(x)$	\mathbb{R}	\mathbb{R}	$-\sin(x)$
$\tan(x)$	$\mathbb{R}\setminus \left\{\frac{\pi}{2}+n\pi, n\in\mathbb{Z}\right\}$	idem	$1 + \tan^2(x) = \frac{1}{\cos^2(x)}.$
Arcsin(x)	[-1, 1]] – 1, 1[$\frac{1}{\sqrt{1-x^2}}$
Arccos(x)	[-1, 1]] - 1, 1[$ \frac{\sqrt{1-x^2}}{-\frac{1}{\sqrt{1-x^2}}} $
Arctan(x)	\mathbb{R}	\mathbb{R}	$\frac{1}{1+x^2}$
sh(x)	\mathbb{R}	$\mathbb R$	$\operatorname{ch}(x)$
$\operatorname{ch}(x)$	\mathbb{R}	\mathbb{R}	sh(x)
th(x)	\mathbb{R}	$\mathbb R$	$1 - \operatorname{th}^2(x) = \frac{1}{\operatorname{ch}^2(x)}$

FIGURE 9.8 – Tableau des dérivées à connaître

Calcul intégral

Lorsqu'on a vu un étudiant de deuxième ou troisième année en Faculté des Sciences peiner pendant 10 minutes pour faire un changement de variables ou une intégration par parties, on ne peut être que prodigieusement agacé, surtout (comme c'est parfois le cas) si le même étudiant assaisonne son ignorance et sa maladresse d'un jargon prétentieux et inutile qu'il n'a pas su davantage assimiler

(Jean Dieudonné)

Le but de ce chapitre est de fournir les bases du calcul intégral. Il s'agit donc de développer les techniques calculatoires, sans se préoccuper pour le moment des fondements théoriques du calcul intégral (à savoir la théorie de l'intégration, avec la construction de l'intégrale). Pour ce faire, notre point de départ sera le théorème fondamental du calcul intégral affirmant que l'intégrale est obtenue comme différence de la primitive évaluée aux deux bornes. Ce théorème sera démontré dans un chapitre ultérieur.

À partir de là, nous développons toutes les techniques calculatoires usuelles, en particulier l'intégration par parties et le changement de variables. Nous donnons une ouverture vers les formules de Taylor, la formule de Taylor avec reste intégral étant obtenue par intégrations par parties itérées.

Sauf mention explicite du contraire, les fonctions considérées dans ce chapitre sont définies sur un intervalle [a,b] de \mathbb{R} , et à valeurs réelles. Nous discuterons rapidement en fin de chapitre du cas des fonctions d'une variable réelle à valeurs dans \mathbb{C} .

I Calcul intégral et primitivation

Cette section a pour but de mettre en place de façon rapide (et sans aborder tous les aspects théoriques sous-jacents) les techniques du calcul intégral. La notion d'intégrabilité est à prendre ici dans un sens assez vague : une fonction sera dite intégrable sur un intervalle [a,b] si on sait définir correctement son intégrale $\int_a^b f(x) \, \mathrm{d}x$. Nous préciserons ce point plus tard. L'exemple le plus important de fonctions intégrables est le cas des fonctions continues sur [a,b], ou continues par morceaux. Vous pouvez dans ce chapitre vous limiter à cette situation.

I.1 Résultats issus de la théorie

Nous admettons **provisoirement** les résultats de ce paragraphe, issus de la construction de l'intégrale. Certains avaient déjà été rappelés en préambule du chapitre précédent.

Théorème 10.1.1 (Linéarité de l'intégrale, admis provisoirement)

Soit f et g deux fonctions intégrables sur [a,b], à valeurs dans \mathbb{R} ou \mathbb{C} , et $\lambda \in \mathbb{R}$. Alors $f + \lambda g$ est aussi intégrable et

 $\int_a^b f(x) + \lambda g(x) \, dx = \int_a^b f(x) \, dx + \lambda \int_a^b g(x) \, dx.$

Théorème 10.1.2 (Chasles, admis provisoirement)

Soit f une fonction intégrable sur [a,b], à valeurs dans \mathbb{R} ou \mathbb{C} , et $c \in [a,b]$. Alors

$$\int_a^b f(x) dx = \int_a^c f(x) dx + \int_c^b f(x) dx.$$

Théorème 10.1.3 (Croissance, positivité et stricte positivité de l'intégrale, admis prov.)

1. Soit a < b et f et g deux fonctions continues sur [a,b], à valeurs dans \mathbb{R} , et telles que $f \leqslant g$ sur [a,b]. Alors :

$$\int_a^b f(t) \, dt \leqslant \int_a^b g(t) \, dt$$

- 2. En particulier, si $f \geqslant 0$ sur [a,b], alors $\int_a^b f(t) dt \geqslant 0$.
- 3. Enfin, si f est continue positive et non identiquement nulle sur [a,b], alors $\int_a^b f(t) dt > 0$.

Théorème 10.1.4 (Inégalité triangulaire intégrale, admis provisoirement)

Soit a < b, et f une fonction continue sur [a,b], à valeurs dans \mathbb{R} ou \mathbb{C} . Alors

$$\left| \int_a^b f(t) \, dt \right| \leqslant \int_a^b |f(t)| \, dt.$$

Si a et b ne sont pas dans le bon sens, il faut penser à rétablir l'ordre des bornes d'abord. On peut aussi par convention désigner par [a,b] l'intervalle fermé dont les extrémités sont a et b (même si b < a), et écrire dans tous les cas :

$$\left| \int_{a}^{b} f(t) \, dt \right| \leqslant \int_{[a,b]} |f(t)| \, dt,$$

cette notation signifiant qu'on considère l'intégrale de la borne inférieure à la borne supérieure de l'intervalle.

Ces deux résultats ne nous seront pas indispensable pour la plus grande partie de ce chapitre, mais peuvent être utiles au détour d'un exercice.

Théorème 10.1.5 (Intégrabilité des fonctions continues, admis provisoirement)

Les fonctions continues sur un intervalle fermé borné [a,b], à valeurs dans \mathbb{R} ou \mathbb{C} , sont intégrables : on peut donc considérer leur intégrale $\int_a^b f(t) dt$.

Par ailleurs, nous rappelons la notion de primitive :

Définition 10.1.6 (primitive)

Soit $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} . Soit E un sous-ensemble ouvert de \mathbb{R} et $f: E \to \mathbb{K}$. Une primitive F de f est une fonction $F: E \to \mathbb{C}$, dérivable sur E et telle que pour tout $x \in E$, F'(x) = f(x).

Les fonctions de dérivée nulle sur un intervalle étant les fonctions constantes, on a de façon immédiate :

Proposition 10.1.7 (unicité d'une primitive à constante près)

Soit I un intervalle de \mathbb{R} et f admettant une primitive F. Alors l'ensemble des primitives de f sur I est $\{F+c, c \in \mathbb{R}\}$.

Autrement dit, deux primitives de f sur un intervalle I ne diffèrent que d'une constante additive. En particulier, si f admet au moins une primitive, alors, étant donné $x_0 \in I$ et $y_0 \in \mathbb{R}$, il existe une unique primitive F de f telle que $F(x_0) = y_0$.

Avertissement 10.1.8

Attention, ce résultat n'est pas vrai si I n'est pas un intervalle. Si I est une réunion disjointe d'intervalles ouverts, les primitives diffèrent d'une fonction constante sur chacun des intervalles ouverts de l'union (mais pouvant diffèrer d'un intervalle à l'autre).

Nous pouvons maintenant énoncer, et démontrer à l'aide des résultats admis, notre point de départ pour l'étude pratique de l'intégration :

Théorème 10.1.9 (Expression intégrale d'une primitive)

Soit f une fonction continue sur un intervalle I, à valeurs dans \mathbb{R} ou \mathbb{C} , et $x_0 \in I$. Alors la fonction :

$$F: x \mapsto \int_{x_0}^x f(t) \, \mathrm{d}t$$

est une primitive de f. Il s'agit de LA primitive s'annulant en x_0 .

Utiliser un résultat précédent pour justifier que F est bien défini. Étudier la dérivabilité en x par taux d'accroissement. Pour passer à la limite, encadrer f au voisinage de x entre $f(x) - \varepsilon$ et $f(x) + \varepsilon$, par continuité.

Remarque 10.1.10

En particulier, ce théorème affirme que toute fonction continue sur un intervalle admet une primitive sur cet intervalle. On va même un peu plus loin puisqu'on donne une explicitation de cette primitive sous forme d'une intégrale.

Remarque 10.1.11

- Il existe des fonctions non continues admettant des primitives. On peut montrer par exemple que la fonction $f: x \mapsto x^2 \sin(\frac{1}{x})$ est dérivable, de dérivée non continue. Cette dérivée, bien que non continue, admet donc une primitive.
- Cependant, toute fonction n'admet pas de primitive. On peut montrer par exemple qu'une dérivée vérifie toujours la propriété des valeurs intermédiaires, même si elle n'est pas continue (théorème de Darboux). Ainsi, toute fonction ne vérifiant par la propriété des valeurs intermédiaires n'est pas primitivable. C'est le cas par exemple de $\mathbb{1}_{\mathbb{Q}}$, ou plus simplement de $x \mapsto |x|$.

On en déduit de façon immédiate le théorème fondamental du calcul intégral :

Théorème 10.1.12 (Théorème fondamental du calcul des intégrales)

Soit f une fonction continue sur [a,b], à valeurs dans \mathbb{R} ou \mathbb{C} . Soit F une primitive de f. Alors :

$$\int_{a}^{b} f(t) dt = F(b) - F(a).$$

$$F$$
 diffère de $x \mapsto \int_a^x f(t) dt$ d'une constante, qu'on détermine en a .

Nous faisons les mises en garde suivantes :

Avertissement 10.1.13

Le théorème fondamental du calcul des intégrales est énoncé pour des fonctions continues uniquement :

- Si f n'est pas continue, $x \mapsto \int_{x_0}^x f(x) dx$ peut ne pas être une primitive de f (voir le cas d'une fonction obtenue en modifiant une valeur d'une fonction continue); il existe même des fonctions intégrables non primitivables
- Il existe des fonctions non intégrables f admettant des primitives; f étant non intégrable, le théorème fondamental du calcul des intégrales tombe en défaut!

Exemples 10.1.14

- Pour un exemple illustrant le premier point, on peut admettre le théorème de Darboux énoncé dans la remarque précédente. Une fonction ne vérifiant pas la propriété des valeurs intermédiaires n'est donc pas une dérivée, et n'est par conséquent pas primitivable. Ce n'est pas dur de trouver une telle fonction, en s'arrangeant pour qu'elle soit intégrable (par exemple une fonction continue par morceaux).
 - Remarquez qu'on peut construire un exemple simple en partant d'une fonction continue simple (par exemple une fonction constante) et en remplaçant la valeur en un point. Les fonctions intégrales associées à la fonction initiale et à la fonction modifiée sont alors les mêmes et ne peuvent pas être primitive des deux fonctions à la fois.
- Pour un exemple illustrant le second point, on admettra qu'une fonction intégrable (au sens de Riemann) sur un intervalle fermé borné est bornée. On le justifiera dans un chapitre ultérieur. Considérez alors la fonction

$$F: x \mapsto \begin{cases} x^2 \sin\left(\frac{1}{x^2}\right) & \text{si } x \neq 0\\ 0 & \text{si } x = 0 \end{cases}$$

Vérifiez (en formant le taux d'accroissement en 0) que F est dérivable sur \mathbb{R} donc sur [-1,1]. Sa dérivée f est-elle intégrable?

Théorème 10.1.15 (Dérivation d'une intégrale dépendant de ses bornes)

Soit I et J deux intervalles de \mathbb{R} et $f: I \to \mathbb{R}$ une fonction continue sur I. Soit u et v deux applications dérivables de J à valeurs dans I. Alors la fonction F définie sur J par $F(x) = \int_{u(x)}^{v(x)} f(t) \, dt$ est dérivable sur J, et

$$\forall x \in J, \quad F'(x) = v'(x)f(v(x)) - u'(x)f(u(x)).$$

Si de plus f est de classe C^{n-1} et u et v sont de classe C^n , alors F est de classe C^n .

Étant donné G une primitive de f, exprimer F en fonction de G, u et v et dériver.

I.2 Primitivations composées

Dans toute la suite, et sauf mention explicite du contraire, les fonctions considérées sont définies sur un intervalle [a, b] de $\mathbb R$ et à valeurs dans $\mathbb R$ ou $\mathbb C$.

Le théorème fondamental du calcul intégral montre à quel point il est important de savoir calculer des primitives. En particulier, une bonne connaissance des primitives des fonctions usuelles est indispensable pour une bonne maîtrise du calcul intégral. Ces primitives dont une bonne connaissance est indispensable sont rappelées dans le tableau de la figure 10.1. À connaître sur le bout des doigts.

Par commodité, et par référence au théorème fondamental du calcul intégral, nous introduisons la notation suivante :

Notation 10.1.16

Étant donnée une fonction continue f, on désigne par $\int^x f(t) dt$ (fonction de la variable x), ou parfois plus simplement par $\int f$ une primitive générique de f.

Avertissement 10.1.17

Il faut être bien conscient que cette notation n'est définie qu'à une constante près. Il s'agit donc d'un abus de notation, à manipuler avec précautions, comme toute notation abusive.

Des primitives usuelles, nous pouvons en déduire d'autres, obtenues par les règles de compositions, en lisant à l'envers la formule de dérivation des fonctions composées :

Proposition 10.1.18 (primitivation de fonctions composées)

Soit f une fonction définie sur un intervalle ouvert I et admettant une primitive F. Soit u une fonction dérivable de J dans I, où J est un intervalle ouvert de \mathbb{R} . Alors, une primitive de $u' \times f \circ u$ est $F \circ u$:

$$\int (u' \times f \circ u) = \left(\int f \right) \circ u.$$

Dériver $F \circ u$.

Avertissement 10.1.19

Attention, la fonction $f \circ u$ ne se primitive pas en $\frac{F \circ u}{u'}$!!

Exemples 10.1.20

- 1. Primitives de $x \mapsto \frac{1}{x(1+\ln x^2)}$.
- 2. Primitives de $x \mapsto \frac{x^3}{1+x^4}$ et $x \mapsto \frac{x}{1+x^4}$

Un cas fréquent est celui d'une composition par $x \mapsto (ax + b)$. Ici, la dérivée de cette dernière fonction étant constante, on peut la passer du côté de la primitive (par linéarité de la dérivation). On obtient alors :

Corollaire 10.1.21 (Primitivation de $x \mapsto f(ax + b)$)

Soit F une primitive de f sur un intervalle I, et a et b deux réels, $a \neq 0$. Soit J un intervalle tel que $aJ + b \subset I$. Alors la fonction $g: x \mapsto f(ax + b)$ est primitivable sur J, et une primitive en est $G: x \mapsto \frac{1}{a}F(ax + b)$.

Ce n'est bien sûr qu'une réexpression dans un cas très particulier du théorème général de primitivation des composées.

Nous voyons comment utiliser ce corollaire pour deux situations typiques importantes : la primitivation des fonctions du type $e^{ax}\cos(bx)$, et la primitivation des fractions rationnelles du type $\frac{1}{ax^2+bx+c}$, qu'on recontre assez fréquemment. La méthode, basée sur la mise sous forme canonique, est à savoir mettre en place sans hésiter

Méthode 10.1.22 (primitivation de $f: x \mapsto e^{ax} \cos(bx)$)

Cette méthode s'adapte évidemment aussi pour le sinus.

- Voir f(x) comme partie réelle de $e^{\lambda x}$, avec $\lambda = a + ib$
- Utiliser le corollaire (valide aussi pour des fonctions à valeurs complexes) pour obtenir une primitive
- Utiliser la quantité conjuguée pour se débarrasser des complexes au dénominateur
- \bullet La partie réelle de la fonction obtenue est une primitive de f.

Méthode 10.1.23 (primitivation d'inverses de trinômes)

Soit $P: x \mapsto ax^2 + bx + c$ un polynôme de degré $2 \ (a \neq 0)$.

- 1. Si P admet une racine double r, $\frac{1}{P}$ se primitive en $x \mapsto \frac{-1}{a(x-r)}$.
- 2. Si P admet deux racines réelles r_1 et r_2 , chercher α et β tels que

$$\frac{1}{P(x)} = \frac{\alpha}{x - r_1} + \frac{\beta}{x - r_2}.$$

La fonction $\frac{1}{P}$ se primitive en $x \mapsto \alpha \ln |x - r_1| + \beta \ln |x - r_2|$

3. Si P n'a pas de racine réelle, effectuer une mise sous forme canonique pour obtenir :

$$\frac{1}{P(x)} = \frac{\gamma}{(\alpha x + \beta)^2 + 1},$$

puis utiliser une primitivation composée : une primitive en est

$$x \mapsto \frac{\gamma}{\alpha} \operatorname{Arctan}(\alpha x + \beta).$$

Cette méthode est adaptable au cas de $x \mapsto \frac{1}{\sqrt{ax^2 + bx + c}}$. La mise sous forme canonique nous ramène dans ce cas soit à une dérivée (composée) de Arcsin, soit Argch, soit encore Argsh.

Exemples 10.1.24

- 1. Primitives de $x \mapsto e^x \cos(2x)$.
- 2. Primitives de $x \mapsto \frac{1}{x^2 + 2x + 3}$

3. Primitives de
$$x \mapsto \frac{1}{\sqrt{1-2x-x^2}}$$
.

Nous avons indiqué dans la figure 10.1 les différentes expressions composées qu'on peut primitiver en partant de chacune des fonctions usuelles. Par convention, dans ce tableau les fonctions dont le nom est une lettre majuscule correspondent aux primitives des fonctions en lettres minuscules correspondantes. Par ailleurs, dans la dernière colonne, nous avons noté par abus $\sin(u)$ pour la fonction composée de sin et u, et de même pour un certain nombre d'autres fonctions. Cette notation est incorrecte, mais commode ici.

f(x)	F(x)	intervalle	g	G
0	0	\mathbb{R}	0	0
a	ax	\mathbb{R}	au'	au
$x^p \ (p \neq -1)$	$\frac{x^{p+1}}{p+1}$	\mathbb{R} ou \mathbb{R}_+ suivant p	$u'u^p$	$\frac{u^{p+1}}{p+1}$
$\frac{1}{x}$	$\ln x $	R *	$\frac{u'}{u}$	$\ln u $
e^x	e^x	\mathbb{R}	$u'e^u$	e^u
$\sin(x)$	$-\cos(x)$	\mathbb{R}	$u'\sin(u)$	$-\cos(u)$
$\cos(x)$	$\sin(x)$	\mathbb{R}	$u'\cos(u)$	$\sin(u)$
tan(x)	$-\ln \cos(x) $	$\mathbb{R}\setminus\{\tfrac{\pi}{2}+n\pi,\ n\in\mathbb{Z}\}$	$u'\tan(u)$	$-\ln \cos(u) $
$\frac{1}{\cos^2(x)}$	$\tan(x)$	$\mathbb{R}\setminus\{\tfrac{\pi}{2}+n\pi,\ n\in\mathbb{Z}\}$	$\frac{u'}{\cos^2(u)}$	tan(u)
$1 + \tan^2(x)$	$\tan(x)$	$\mathbb{R} \setminus \{ \frac{\pi}{2} + n\pi, n \in \mathbb{Z} \}$	$u' + u' \tan^2(u)$	tan(u)
$\frac{1}{1+x^2}$	$\operatorname{Arctan}(x)$	\mathbb{R}	$\frac{u'}{1+u^2}$ u'	Arctan(u).
$\frac{1}{\sqrt{1-x^2}}$	Arcsin(x) ou $-Arccos(x)$] – 1, 1[$\frac{u'}{\sqrt{1-u^2}}$	Arcsin(u)
sh(x)	ch(x)	\mathbb{R}	$u' \operatorname{sh}(u)$	ch(u)
ch(x)	sh(x)	\mathbb{R}	$u'\operatorname{ch}(u)$	sh(u)
th(x)	$\ln(\operatorname{ch}(x))$	\mathbb{R}	$u' \operatorname{th}(u)$	$\ln(\operatorname{ch}(u))$
$\frac{1}{\operatorname{ch}^2(x)}$	$\operatorname{th}(x)$	$\mathbb R$	$\frac{u'}{\operatorname{ch}^2(u)}$	th(u)
$1 - \th^2(x)$	$\operatorname{th}(x)$	\mathbb{R}	$u' - u' \operatorname{th}^2(u)$	th(u)

FIGURE 10.1 – Tableau des primitives à connaître

II Techniques de calcul intégral

Comme annoncé ci-dessus, notre point de départ est le théorème fondamental du calcul intégral (qui, vu son importance, est parfois aussi appelé théorème fondamental de l'analyse). Ce théorème est à la base

des deux grandes techniques (outre le calcul direct à l'aide d'une primitive) permettant de calculer des intégrales :

II.1 Intégration par parties

Théorème 10.2.1 (Intégration par parties; nous nous autoriserons l'abréviation IPP)

Soit f, g deux fonctions de classe C^1 sur [a, b] (ou [b, a]). Alors :

$$\int f'g = fg - \int fg' \qquad et \qquad \int_a^b f'(x)g(x) \ \mathrm{d}x = \left[f(x)g(x)\right]_a^b - \int_a^b f(x)g'(x) \ \mathrm{d}x.$$

Cette formule reste valide si $a \ge b$.

Utiliser le théorème fondamental sur la fonction f'g + fg' dont une primitive est fg.

Exemple 10.2.2

- 1. Calcul d'une primitive de $x \mapsto \ln(x)$.
- 2. Calcul de $\int_0^1 \operatorname{Arctan}(x)$

En effectuant plusieurs intégrations par parties successives, on obtient :

Théorème 10.2.3 (Intégration par parties itérée, HP)

Soit $n \ge 1$, et soit f et g deux fonctions de classe C^n sur [a,b] (ou [b,a]). Alors :

$$\int_{a}^{b} f^{(n)}(x)g(x) dx = \left[\sum_{i=0}^{n-1} (-1)^{i} f^{(n-1-i)}(x)g^{(i)}(x)\right]_{a}^{b} + (-1)^{n} \int_{a}^{b} f(x)g^{(n)}(x) dx.$$

Récurrence, ou bien vérifier que ce qu'il y a entre crochets est une primitive de la partie intégrale (dériver et télescoper).

Remarque 10.2.4 (Comment retenir cette formule)

- La partie variations est la partie intégrée de la formule : pour chaque terme de la somme l'ordre total de dérivation est un de moins que l'ordre total dans l'intégrale, donc n-1. On somme sur toutes les façons de dériver f et g avec un ordre total de n-1.
- Le signe qui alterne dans la somme provient du fait qu'à chaque étape, on change le signe de l'intégrale. La première étape doit donner un signe positif. Or, la première étape de l'IPP donne le facteur $f^{(n-1)}g$, donc correspond à l'indice i=0. Ainsi, le signe est $(-1)^i$.
- Le signe devant l'intégrale provient du fait qu'on a effectué n intégrations par partie (autant qu'il faut pour abaisser le degré de dérivation de f jusqu'à 0); chaque intégration par parties change le signe devant l'intégrale.

Cette formule étant théoriquement hors programme, on peut l'utiliser, mais en disant qu'on répète plusieurs intégrations par parties plutôt que d'invoquer directement la formule d'intégration par parties itérée. La différence est subtile, et permet de respecter le programme à peu de frais. Si vous n'êtes pas

trop sûr de vous, sachez qu'une IPP itérée à un ordre n indéterminé peut toujours se ramener à un raisonnement par récurrence utilisant une IPP simple.

Exemple 10.2.5

Calculer pour tout $x \in \mathbb{R}$, $F_n(x) = \int_0^x t^n e^{-t} dt$ sous forme d'une somme. Déterminer la limite de $F_n(x)$ lorsque x tend vers $+\infty$.

Il s'agit d'un cas particulier de la fonction Γ d'Euler, définie pour tout x>0 par

$$\Gamma(x) = \int_0^{+\infty} t^{x-1} e^{-t} dt.$$

Ainsi, pour tout $n \in \mathbb{N}^*$, $\Gamma(n) = (n-1)!$. On peut donc voir la fonction Γ comme un prolongement à \mathbb{R} de la factorielle.

Une conséquence importante du théorème d'intégration par parties itérée est la formule de Taylor avec reste intégral :

Théorème 10.2.6 (Formule de Taylor avec reste intégral)

Soit f une fonction de classe C^{n+1} sur [a,b] (ou [b,a]), à valeurs dans \mathbb{R} ou \mathbb{C} . Alors

$$f(b) = \sum_{k=0}^{n} f^{(k)}(a) \frac{(b-a)^k}{k!} + \int_a^b \frac{(b-t)^n}{n!} f^{(n+1)}(t) dt.$$

Effectuer n+1 intégrations par parties successives, en dérivant $t \mapsto \frac{(b-t)^n}{n!}$. La dernière dérivation annule ce terme

Corollaire 10.2.7 (Inégalité de Taylor-Lagrange)

Soit a < b, et f une fonction de classe C^{n+1} sur [a,b], à valeurs dans \mathbb{R} , telle que $m \leqslant f^{(n+1)} \leqslant M$ sur [a,b]. Alors

$$\frac{m(b-a)^{n+1}}{(n+1)!} \leqslant f(b) - \sum_{k=0}^{n} f^{(k)}(a) \frac{(b-a)^k}{k!} \leqslant \frac{M(b-a)^{n+1}}{(n+1)!}$$

Remarque 10.2.8

1. L'inégalité de Taylor-Lagrange est souvent utilisée dans la version suivante : si f est de classe C^{n+1} sur [a,b] et $|f^{(n+1)}| \leq M$ sur [a,b], alors

$$\left| f(b) - \sum_{k=0}^{n} f^{(k)}(a) \frac{(b-a)^k}{k!} \right| \leqslant \frac{M|b-a|^{n+1}}{(n+1)!}$$

Sous cette forme, elle est valide aussi pour des fonctions f de classes \mathbb{C}^{n+1} sur [a,b] à valeurs dans \mathbb{C}

- 2. Sous cette forme (avec les valeurs absolues à droite), elle reste également valide si $b \leq a$.
- 3. Si a < b, la version générale de l'inégalité permet d'établir par exemple que sous les mêmes hypothèses, si $f^{(n+1)} \ge 0$, alors

$$f(b) \geqslant \sum_{k=0}^{n} f^{(k)}(a) \frac{(b-a)^k}{k!},$$

et de même dans l'autre sens lorsque $f^{(n+1)} \leq 0$.

4. Que reconnaissez-vous pour n = 0, pour n = 1?

II.2 Changements de variables

La deuxième grande technique du calcul intégral est celle du changement de variable, qui n'est en fait qu'une réexpression commode de la primitivation de fonctions composées.

Théorème 10.2.9 (Changement de variables)

Soit f une fonction continue sur $[\alpha, \beta]$, et u une fonction de classe C^1 de [a, b] vers $[\alpha, \beta]$. Alors f est intégrable entre u(a) et u(b), et :

$$\int_{u(a)}^{u(b)} f(x) \, dx = \int_{a}^{b} f(u(t))u'(t) \, dt.$$

On dit qu'on a fait le changement de variable x = u(t).

Utiliser le théorème fondamental sur chacune des deux intégrales pour les comparer.

Remarque 10.2.10 (Comment ne pas s'embrouiller dans les bornes)

Dans l'intégrale de gauche, les bornes sont pour la variable x, dans celle de droite, elles sont pour la variable t. On passe de la variable t à la variable x en appliquant u: il en est de même pour les bornes : les bornes pour la variable x sont obtenues en appliquant u aux bornes pour la variable t.

Remarques 10.2.11

- 1. Si u est bijective, on peut écrire : $\int_{\alpha}^{\beta} f(x) dx = \int_{u^{-1}(\alpha)}^{u^{-1}(\beta)} f(u(t))u'(t) dt.$
- 2. Cette formule peut s'utiliser dans les deux sens, comme le montre l'exemple suivant.

Exemples 10.2.12

1.
$$\int_{2}^{3} \frac{4t^{3}}{1 - t^{8}} \, \mathrm{d}t$$

2.
$$\int_0^1 \sqrt{1-x^2} \, dx$$
.

II.3 Intégrales de fonctions admettant des symétries

On donne trois conséquences importantes du théorème de changement de variable, et du théorème de dérivation d'une intégrale dépendant de ses bornes, pour le calcul d'intégrales de fonctions paires, impaires ou périodiques.

Proposition 10.2.13 (Intégrale d'une fonction impaire)

Soit I = [-a, a] et f une fonction continue et impaire sur I. Alors

$$\int_{-a}^{a} f(x) \, \mathrm{d}x = 0.$$

d Éléments de preuve.

Changement de variable y = -x.

Proposition 10.2.14 (Intégrale d'une fonction paire)

Soit I = [-a, a] et f une fonction continue et paire sur I. Alors

$$\int_{-a}^{a} f(x) \, dx = 2 \int_{0}^{a} f(x) \, dx.$$

√ Éléments de preuve.

Couper en 2 en 0 (par la relation de Chasles), et faire le changement de variable y=-x sur l'intégale sur [-a,0].

Proposition 10.2.15 (Intégrale d'une fonction périodique)

Soit f une fonction continue sur \mathbb{R} , périodique de période T > 0. Alors, pour tout $a \in \mathbb{R}$,

$$\int_{a}^{a+T} f(x) dx = \int_{0}^{T} f(x) dx.$$

Dériver par rapport à a.

Ainsi, l'intégrale d'une fonction périodique sur une période ne dépend pas du choix de la période.

III Rapide introduction aux intégrales impropres

Il est très fréquent de considérer l'intégrale d'une fonction, sur un intervalle sur lequel f n'est pas continue partout. Le cas le plus fréquent est le cas d'une fonction continue sur]a,b] ou [a,b[, ou]a,b[, les bornes ouvertes pouvant être des infinis. Si f est discontinue en un nombre fini de points, on peut se ramener à ces situations en coupant l'intervalle en morceaux, et même aux deux premiers cas, en coupant encore en 2. Nous allons donc rapidement évoquer les intégrales de fonctions continues sur un intervalle [a,b[.

Définition 10.3.1 (Convergence d'intégrales impropres)

Soit f une fonction continue sur [a,b[,b] pouvant être infini. On dit que l'intégrale (impropre) $\int_a^b f(t) dt$ converge si la fonction

$$F: x \mapsto \int_a^x f(t) \, \mathrm{d}t,$$

admet une limite finie lorsque x tend vers b^- . On note alors :

$$\int_{a}^{b} f(t) dt = \lim_{x \to b^{-}} \int_{a}^{x} f(t) dt.$$

On donne rapidement deux ou trois propriétés qui nous permettront de justifier rapidement la convergence de certaines intégrales. Il ne s'agit pas de faire une étude exhaustive (il s'agit de notions qui seront étudiées plus largement en deuxième année), mais de se donner dès maintenant quelques outils.

Théorème 10.3.2 (Théorème de comparaison pour la convergence des intégrales) Soient f et g deux fonctions continues et positives sur [a,b[, telles que $f \leqslant g$ sur [a,b[. Si $\int_a^b g(t) dt$ converge, il en est de même de $\int_{-b}^{b} f(t) dt$.

De façon plus commode, on utilisera souvent une version plus « floue » (ou plutôt plus locale) de cette comparaison, avec une comparaison f = O(g) ou f = O(g) (avec positivité de g, ce qui suffit à avoir la convergence absolue pour f). La comparaison par équivalents $f \sim_b g$ permet de faire la comparaison dans les deux sens. Elle nécessite aussi la positivité des fonctions (au moins localement au voisinage de b). Voici une conséquence importante du théorème de comparaison.

Corollaire 10.3.3 (Convergence absolue)

Soit f continue $sur\ [a,b[.\ Si\ \int_a^b|f(t)|\ dt$ converge, alors également $\int_a^bf(t)\ dt$. On dit dans ce cas que l'intégrale est absolument convergente, ou que f est intégrable $sur\ [a,b[.$

Équations différentielles linéaires

Ce chapitre a vocation à justifier les techniques de résolution des équations différentielles, admises en physique. Nous nous limitons à l'étude de certaines équations différentielles linéaires. Les autres types ne peuvent en général pas se résoudre explicitement, à moins de pouvoir se ramener à des équations différentielles linéaires. Cela n'empêche pas de pouvoir donner des conditions d'existence et d'unicité, et de savoir étudier les solutions de ces équations différentielles, mais la problématique de résolution explicite qui nous occupe dans ce chapitre est absente dans ce contexte. Les fonctions considérées peuvent être à valeurs réelles ou complexes. On notera $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} suivant la situation.

I Équations différentielles linéaires

Définition 11.1.1 (Équation différentielle linéaire)

Une équation différentielle linéaire d'ordre r d'une fonction inconnue y est une équation différentielle de la forme :

$$a_0(x)y + a_1(x)y' + \dots + a_r(x)y^{(r)} = b(x),$$

où a_r n'est pas la fonction nulle, et les a_i sont des fonctions à valeurs réelles ou complexes, et y une fonction définie sur un sous-ensemble de \mathbb{R} (souvent à déterminer), à valeurs dans $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} .

On définit de la même manière une équation différentielle linéaire d'ordre r de plusieurs variables y_1, \ldots, y_p comme une relation affine à coefficients fonctionnels entre les dérivées des y_i jusqu'à l'ordre r (au moins l'un des coefficients d'un des termes d'ordre r étant non nul).

On définit aussi les systèmes d'équations linéaires.

On étudie de façon directe le cas d'équations linéaires d'ordres 1 et 2, mais auparavant, on se sert de la description générale pour donner un résultat de structure de l'ensemble des solutions.

Théorème 11.1.2 (Structure de l'ensemble des solutions)

Soit $(E): a_0(x)y + a_1(x)y' + \cdots + a_r(x)y^{(r)} = b(x)$ une équation différentielle linéaire à résoudre sur un intervalle I

S'il n'est pas vide, l'ensemble S des solutions de (E) s'exprime sous la forme :

$$\mathcal{S} = \mathcal{S}_0 + y_0,$$

où.

ullet \mathcal{S}_0 est l'ensemble des solutions de l'équation homogène associée

$$(EH): a_0(x)y + a_1(x)y' + \dots + a_r(x)y^{(r)} = 0;$$

• y_0 est une solution particulière.

De plus, S_0 est alors non vide et stable par combinaison linéaire.

On dit que S_0 est un espace vectoriel (sous-espace vectoriel de \mathbb{R}^I) et que S est un sous-espace affine de \mathbb{R}^I dirigé par S_0 .

Par linéarité de la dérivation, justifier que y vérifie (E) ssi $y-y_0$ vérifie (EH).

La recherche d'une solution particulière peut se faire en plusieurs temps, si b se décompose en somme de fonctions plus simples :

Proposition 11.1.3 (Principe de superposition)

Si $b = b_1 + b_2$, pour trouver une solution particulière y_0 de l'équation (E), il suffit de trouver :

- une solution particulière y_1 de (E_1) : $a_0(x)y + a_1(x)y' + \cdots + a_r(x)y^{(r)} = b_1(x)$
- une solution particulière y_2 de (E_2) : $a_0(x)y + a_1(x)y' + \cdots + a_r(x)y^{(r)} = b_2(x)$.

Une solution particulière de (E) est alors $y_1 + y_2$.

Vérification facile, par linéarité de la dérivation.

II Équations différentielles linéaires d'ordre 1

On notera $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} .

II.1 Situation

Nous nous intéressons ici aux équations linéaires d'ordre 1 sur un intervalle I, dont la forme générale est : $a_1(x)y' + a_0(x)y = \beta(x)$, où a_0 et a_1 sont des fonctions d'une variable réelle, à valeurs dans \mathbb{K} .

On se restreint ici au cas où la fonction a_1 ne s'annule pas sur l'intervalle I considéré, et où les fonctions a_1 , a_0 et β sont continues, à valeurs dans \mathbb{K} . Ainsi, en divisant par a_1 et en isolant le terme y', on est ramené à une équation « sous forme normale » (ou « forme résolue ») : y' = a(x)y + b(x), où a et b sont continues à valeurs dans \mathbb{K} .

Nous allons étudier l'ensemble des solutions d'une équation de ce type, à l'aide de deux « quadratures » (c'est-à-dire deux primitivations). Les méthodes mises en oeuvre sont à connaître, car ce sont elles qui vous permettront de résoudre explicitement une équation différentielle.

Au passage, cette étude nous permettra de constater que le théorème de Cauchy-Lispschitz est bien valide dans cette situation : ce théorème affirme, sous certaines conditions, l'existence et l'unicité d'une solution, vérifiant des conditions initiales données.

Le théorème de structure et le théorème de superposition s'appliquent à cette situation. On peut donc se contenter d'étudier l'équation homogène, et de trouver une solution particulière.

II.2 Solutions de l'équation homogène

Théorème 11.2.1 (Résolution de l'équation y' = a(x)y (a continue))

L'ensemble des solutions de l'équation homogène y' = a(x)y est :

$$S_0 = \{ y : x \mapsto Ce^{A(x)}, C \in \mathbb{K} \},$$

où A est une primitive de la fonction (continue) a, et C est une constante.

Poser
$$z(x) = y(x)e^{-A(x)}$$
 et dériver z.

Remarque 11.2.2 (Comment retrouver cette formule si on l'a oubliée)

- Au brouillon, on s'autorise des divisions par y (rigoureusement incorrect si on n'a pas justifié que la fonction ne s'annule pas!) L'équation s'écrit alors $\frac{y'}{y} = a(x)$.
- On reconnait en $\frac{y'}{y}$ la dérivée de $\ln |y|$ (appelée dérivée logarithmique de y). On primitive, on passe à l'exponentielle et le tour est joué.
- Au propre, il est préférable d'utiliser directement la formule du cours, pour éviter les problèmes de justification issus de la division par y.

Exemples 11.2.3

- 1. Résolution de y' = ay (a constant)
- 2. Résolution de $y' = yx^{\alpha}$ sur \mathbb{R} si $\alpha \ge 0$, sur \mathbb{R}_{+}^{*} sinon.

II.3 Recherche d'une solution particulière de y' = a(x)y + b(x)

Pour commencer, fractionner éventuellement le problème en problèmes plus simples par le principe de superposition énoncé plus haut. On suppose cette première étape effectuée, et on cherche une solution particulière de l'équation y' = a(x)y + b(x).

En premier lieu, essayez de DEVINER une solution particulière. Vous pouvez par exemple pour cela vous aider de l'homogénéité. Vous pouvez aussi rechercher une solution constante ou polynomiale.

Mais n'y perdez pas trop de temps : s'il n'y a pas de solution évidente qui vous saute aux yeux, voici une méthode efficace pour trouver une solution particulière (au moins sous forme intégrale) à partir d'une solution de l'équation homogène :

Méthode 11.2.4 (Méthode de variation de la constante)

- 1. Les solutions de l'équation homogène étant de la forme $x \mapsto Ce^{A(x)}$, on recherche une solution particulière de l'équation non homogène sous la forme $x \mapsto C(x)e^{A(x)}$ (on « rend la constante variable »)
- 2. En remplaçant dans l'équation différentielle, $x \mapsto C(x)$ s'obtient par primitivation :

$$C(x) = \int b(x)e^{-A(x)} dx.$$

Exemples 11.2.5

- 1. Résoudre $y' = 2y + \sin(x) + e^x + x \operatorname{sur} \mathbb{R}$
- 2. Résoudre $y' = -\frac{y}{x} + \operatorname{Arctan}(x)$ sur \mathbb{R}_+^*

Remarque 11.2.6

Comme dit plus haut, et j'insiste dessus, il n'est pas toujours nécessaire d'employer la méthode de variation de la constante pour trouver une solution particulière : parfois elle est suffisamment évidente pour être devinée.

Exemples 11.2.7

- 1. Si a et b sont constants, la fonction constante égale à $-\frac{b}{a}$ est solution de y' = ay + b.
- 2. La fonction $y: x \mapsto c e^{\alpha x}$ est solution de $y' = ay + b e^{\alpha x}$, où c vérifie l'équation $\alpha c = ac + b$.

II.4 Problème de Cauchy associé à une EDL du premier ordre

Nous pouvons maintenant résoudre le problème de Cauchy associé à une EDL du premier ordre :

Théorème 11.2.8 (Théorème de Cauchy-Lipschitz pour les équations linéaires d'ordre 1)

Soit a et b deux fonctions continues sur un intervalle I, à valeurs dans $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} . Soit $(x_0, y_0) \in I \times \mathbb{K}$. Alors il existe une et une seule solution y de l'équation différentielle y' = a(x)y + b(x) telle que $y(x_0) = y_0$.

À partir du théorème de structure, et de la forme de la solution homogène, voir quelle condition sur le coefficient inconnu impose $y(x_0) = y_0$.

II.5 Problèmes de raccordement (ou recollement)

Lorsqu'on cherche à résoudre une équation différentielle a(x)y'+b(x)y=c(x), on se ramène à la situation précédente en divisant par a(x). Si a ne s'annule pas sur I, cela ne pose pas de problème. Mais il peut arriver que a s'annule.

Si par exemple a s'annule en un nombre fini de points $x_1 < \cdots < x_n$, cela définit des intervalles $I_1, I_2, \ldots, I_{n+1}$ ouverts en x_1, \ldots, x_n , et dont l'union fait $I \setminus \{x_1, \ldots, x_n\}$

On peut résoudre l'équation sur chaque intervalle selon la méthode précédente, puis essayer de prolonger les fonctions obtenues sur chaque intervalle, en définissant des valeurs adéquates en x_1, \ldots, x_n . Ainsi, la solution générale sur I s'obtiendra en raccordant des solutions sur chaque I_k selon des valeurs de $y(x_k)$. Pour qu'on puisse affirmer qu'on obtient ainsi une solution de l'équation différentielle sur I tout entier, la fonction que l'on cherche à définir sur I entier doit être dérivable sur I (pour que l'ED ait un sens, même si a(x) s'annule en un des points particulier), donc en particulier, elle doit être continue. Il faut donc procéder de la façon suivante :

- Raccorder les solutions par continuité aux points x_i . Ainsi, les deux branches à raccorder en x_i doivent avoir même limite pour que ce soit possible. Cela contraint souvent les constantes laissées indéterminées lors de la résolution de l'ED.
- Vérifier que la fonction ainsi obtenue par prolongement par continuité est dérivable aux points de raccordement et que sa dérivée vérifie bien l'ED.

Exemple 11.2.9

Résoudre sur $\mathbb R$ les équations différentielles suivantes :

- 1. $\sqrt{|x|}y' = y$
- 2. xy' = y.

II.6 Résolution des EDL d'ordre 1 à coefficients constants

Du fait de son importance pratique, on isole dans le résultat suivant la résolution complète du cas d'une équation y = ay + b dans le cas où a et b sont constants (réels ou complexes). Ce théorème est un corollaire immédiat des résultats des sections précédentes.

Théorème 11.2.10 (Résolution d'une équation linéaire y' = ay + b à coefficients constants)

Soit a et b deux éléments de $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} . L'ensemble des solutions de l'équation différentielle y' = ay + b est :

$$S = \left\{ y : x \mapsto Ce^{ax} - \frac{b}{a}, \ C \in \mathbb{K} \right\},$$

En particulier, l'unique solution telle que $y(x_0) = y_0$ est :

$$y: x \mapsto \left(\frac{b}{a} + y_0\right) e^{a(x-x_0)} - \frac{b}{a}.$$

Application simple du théorème général.

III Résolution des EDL d'ordre 2 à coefficients constants

III.1 Position du problème

L'outil matriciel permet de se ramener à une équation différentielle matricielle d'ordre 1 (en introduisant comme nouvelles fonctions la dérivée de y), qui s'étudie comme plus haut, mais nécessite quelques connaissances supplémentaires sur le calcul matriciel (notamment la définition de l'exponentielle de matrices).

En attendant d'avoir ces outils, nous nous contentons d'une étude dans un cas beaucoup moins général, celui où tous les coefficients de l'équation sont constants, dans $\mathbb R$ ou $\mathbb C$. Par commodité, on note $\mathbb K=\mathbb R$ ou $\mathbb C$, selon le contexte dans lequel on se place, pour éviter d'avoir à distinguer les deux cas dans les énoncés. Si le coefficient du terme en y'' est nul, on est ramené à l'étude d'une équation d'ordre 1. On peut donc supposer que ce coefficient est non nul, et en divisant l'équation par ce coefficient, on est ramené à l'étude d'une équation de la forme suivante :

$$y'' + ay' + by = f(x)$$
 où $a, b \in \mathbb{K}$ et f continue à valeurs dans \mathbb{K} .

Dans cette situation encore, on peut :

- 1. utiliser le théorème de structure de l'ensemble des solutions, qui nous dit qu'on peut se contenter de la résolution du système homogène y'' + ax + by = 0, et de la recherche d'une solution particulière
- 2. utiliser le principe de superposition pour ramener la recherche des solutions particulières au cas de fonctions f les plus simples possibles.

III.2 Résolution de l'équation homogène

La méthode ci-dessous est importante en soi, même si l'utilisation directe du théorème qu'on en déduit est plus efficace. Cependant, le deuxième point de cette méthode se généralise au cas d'équations linéaires d'ordre 2 à coefficients non constants, à condition d'avoir réussi à trouver une solution particulière de l'équation homogène (ce qui constitue alors souvent le point délicat de la résolution). C'est une situation plus générale s'adaptant au cas d'équations différentielles linéaires du second ordre à coefficients quelconques, homogènes ou non.

Méthode 11.3.1 (Recherche des solutions de y'' + a(x)y' + b(x)y = f(x))

Cette méthode nécessite la connaissance d'une solution particulière de l'équation homogène.

• Soit y_0 une solution particulière de l'équation homogène y'' + a(x)y' + b(x)y = 0. On pose $y = y_0z$ (changement de fonction; remarquez qu'il s'agit encore d'une variation de constante, puisque Ky_0 est solution).

• Vérifier que z vérifie l'équation (en tout point en lequel y_0 ne s'annule pas) :

$$2y_0'z' + y_0z'' + ay_0z' = f(x).$$

- Résoudre l'équation différentielle d'ordre 1 d'inconnue z' et primitiver encore pour obtenir z. Comme il y a deux quadratures, on obtient deux paramètres sur chaque intervalle : l'espace des solutions est de dimension 2.
- \bullet Attention aux éventuels raccordements à faire si y_0 s'annule.

Exemples 11.3.2

- Il peut arriver qu'une solution soit évidente, mais pas les autres. La méthode ci-dessus est adaptée dans ce cas.
- Si les coefficients a et b sont polynomiaux, on peut espérer trouver une solution polynomiale (ce n'est pas systématiquement possible). Essayer de déterminer a priori le degré du polynôme par un argument sur le coefficient dominant, puis écrire l'ED avec les coefficients du polynôme à déterminer. On trouve alors l'ensemble de toutes les solutions par la méthode ci-dessus.

On obtient, par application de cette méthode, en recherchant d'abord une solution exponentielle :

Théorème 11.3.3

Soit a et b des nombres complexes. L'ensemble des solutions à valeurs complexes de l'équation y'' + ay' + by = 0 est :

$$\begin{cases} \mathcal{S}_0 = \{ y : x \mapsto c e^{r_1 x} + d e^{r_2 x}, \ c, d \in \mathbb{C} \} & si \ \Delta \neq 0 \\ \mathcal{S}_0 = \{ y : x \mapsto (c + d x) e^{r x}, \ c, d \in \mathbb{C} \} & si \ \Delta = 0, \end{cases}$$

où Δ est le discriminant du polynôme X^2+aX+b , et où r_1 et r_2 sont les racines (réelles ou complexes) de ce polynôme (notée simplement r, en cas de racine double).

Terminologie 11.3.4 (polynôme caractéristique)

Le polynôme X^2+aX+b est appelé polynôme caractéristique de l'équation différentielle y''+ay'+by=0.

Remarques 11.3.5

- 1. Si $\Delta \neq 0$, la première étape de la méthode exposée pour trouver ces solutions nous fournissait déjà la totalité des solutions (puisqu'on pouvait choisir indifféremment r_1 ou r_2 et puisque l'ensemble des solutions est stable par combinaison linéaire). La deuxième étape sert dans ce cas seulement à prouver qu'il n'y a pas d'autre solution.
- 2. Dans le cas où $\Delta=0$, la deuxième étape nous fournit une solution que la première étape ne nous permettait pas d'obtenir. La méthode trouve là toute sa pertinence.
- 3. La méthode exposée ci-dessus est aussi valable pour des coefficients variables, à partir du moment où on connait une solution particulière.

Même si les coefficients a et b sont réels, il peut arriver que l'expression obtenue au bout fasse intervenir des exponentielles complexes (cas où $\Delta < 0$). La solution générale obtenue est alors une fonction à valeurs complexes. Parmi celles-ci, certaines sont à valeurs réelles. On est souvent intéressé par ces fonctions spécifiquement. Voici un résultat permettant de retrouver facilement l'ensemble des solutions à valeurs réelles

Proposition 11.3.6 (Passer des solutions complexes aux solutions réelles)

Soit y'' + ay' + by = 0 une équation différentielle linéaire à coefficients constants réels. Soit $S_{\mathbb{C}}$ l'ensemble de toutes ses solutions à valeurs complexes et $\mathcal{S}_{\mathbb{R}}$ l'ensemble des solutions à valeurs réelles. Alors :

$$\mathcal{S}_{\mathbb{R}} = \{ \operatorname{Re}(y) \mid y \in \mathcal{S}_{\mathbb{C}} \}.$$

Par double-inclusion:

- Par définition de la dérivation de fonctions à valeurs complexes, si y est solution, Re(y) aussi, et est à valeurs réelles.
- Une solution réelle est aussi dans $\mathcal{S}_{\mathbb{C}}$ et est partie réelle d'elle-même.

On obtient alors:

Théorème 11.3.7 (Expression des solutions réelles de y'' + ay' + by = 0)

Soit Δ le discriminant du polynôme caractéristique $X^2 + aX + b = 0$ et r_1 et r_2 ses racines réelles ou complexes $(r = r_1 = r_2 \text{ si } \Delta = 0)$. Alors, l'ensemble des solutions réelles est :

- $S_{\mathbb{R}} = \{ x \mapsto c e^{r_1 x} + d e^{r_2 x} \mid (c, d) \in \mathbb{R}^2 \} \ si \ \Delta > 0 ;$
- $\mathcal{S}_{\mathbb{R}} = \{x \mapsto (cx+d)e^{rx} \mid (c,d) \in \mathbb{R}^2\} \text{ si } \Delta = 0;$ $\mathcal{S}_{\mathbb{R}} = \{x \mapsto e^{\alpha x} (c\cos(\omega x) + d\sin(\omega x)) \mid (c,d) \in \mathbb{R}^2\} \text{ si } \Delta < 0,$ où α et ω sont tels que $r_1 = \alpha - i\omega$ et $r_2 = \alpha + i\omega$.

Dans le cas où $\Delta < 0$, la valeur de α est unique, mais ω n'est unique qu'au signe près. On peut par exemple choisir:

$$\alpha = -\frac{a}{2}$$
 et $\omega = \frac{\sqrt{-\Delta}}{2}$.

On peut aussi réexprimer les solutions en regroupant sin et cos

$$S_{\mathbb{R}} = \left\{ x \mapsto A e^{\alpha x} \cos(\omega x - \varphi) \mid (A, \varphi) \in \mathbb{R}^2 \right\} \qquad (\Delta < 0),$$

ou encore:

$$S_{\mathbb{R}} = \left\{ x \mapsto A e^{\alpha(x - x_0)} \cos(\omega(x - x_0) - \varphi) \mid (A, \varphi) \in \mathbb{R}^2 \right\} \qquad (\Delta < 0),$$

forme qui peut être plus adaptée si les conditions initiales sont données en x_0 (vous pouvez réexprimer de même les autres cas).

III.3 Solution générale du système non homogène

Comme pour le cas d'EDL de degré 1, la première étape est l'utilisation du principe de superposition pour se ramener à des études plus simples.

Pour les EDL d'ordre 1, comme dans le cas des équations d'ordre 1, il existe une méthode dite « de variation des constantes » pour trouver une solution particulière, mais elle est plus délicate à mettre en oeuvre. Comme elle n'est pas au programme, nous nous limitons à l'étude de cas particuliers intervenant souvent en physique.

Proposition 11.3.8 (Solutions particulières pour un second membre $Q(x)e^{\lambda x}$, admis)

Soit $Q \in \mathbb{C}[X]$, et l'équation différentielle $(E): y'' + ay' + by = Q(x)e^{\lambda x}$. Soit P le polynôme caractéristique de l'équation (E), et m la multiplicité de λ comme racine de P. Alors, il existe une solution particulière de (E) de la forme :

$$y_P(x) = x^m R(x) e^{\lambda x},$$

où R est un polynôme de même degré que Q. Ce résultat reste valide pour des équations d'ordre plus important.

Admettre ce théorème n'est pas gênant puisque son seul intérêt est pratique. Il suffira de se rendre compte qu'en pratique, il fournit une méthode qui aboutit!

Toute résolution avec un second membre d'une autre forme est hors-programme. On pourra néanmoins remarquer que la méthode 11.3.1 permet de se ramener dans tous les cas à une équation d'ordre 1.

Exemples 11.3.9

- 1. Résoudre sur $\mathbb{R}: y'' + 2y' + y = e^x$.
- 2. Résoudre sur \mathbb{R} : $y'' + y' + y = \sin(x)$.

III.4 Problème de Cauchy

Théorème 11.3.10 (Théorème de Cauchy-Lipschitz pour les EDL d'ordre 2 (admis))

Soit I un intervalle de \mathbb{R} , $x_0 \in I$ et $(y_0, y_1) \in \mathbb{R}^2$. Soit f une fonction continue sur I. Alors il existe une unique solution y de l'équation y'' + ay' + by = f(x) telle que $y(x_0) = y_0$ et $y'(x_0) = y_1$.

Suites numériques

Deux grandeurs inégales étant proposées, si l'on retranche de la plus grande une partie plus grande que sa moitié, si l'on retranche du reste une partie plus grande que sa moitié, et que l'on fait toujours la même chose, il restera une grandeur qui sera plus petite que la plus petite des grandeurs proposées.

(Euclide)

L'ensemble de la série renferme donc en bloc toutes les approximations, c'est-à-dire les valeurs immédiatement supérieures et inférieures, car, à mesure qu'on la considère de plus en plus loin, l'erreur sera moindre que toute grandeur donnée

(Gottfried Wilhelm Leibniz)

Lorsque les valeurs successivement attribuées à une même variable s'approchent indéfiniment d'une valeur finie, de manière à en différer aussi peu qu'on voudra, cette dernière est appelée limite de toutes les autres.

(Augustin Louis Cauchy)

Nous rappelons:

Définition 12.0.1 (Suite numérique)

Une suite numérique (réelle ou complexe) est une famille $(u_n)_{n\in\mathbb{N}}$ d'éléments de \mathbb{R} ou \mathbb{C} indexée sur \mathbb{N} (parfois sur \mathbb{N}^* , ou sur $\mathbb{N}\setminus\{0,\ldots,n_0-1\}$). Il s'agit donc d'une fonction de \mathbb{N} dans \mathbb{R} ou \mathbb{C} .

I Convergence de suites

I.1 Définition de la limite d'une suite

Note Historique 12.1.1

• L'appréhension de la notion de limite d'une suite est ancienne. On trouve déjà dans les Éléments d'Euclide (citation ci-dessus).

Traduisons cette citation en langage mathématique : pour tout $(\varepsilon, a) \in \mathbb{R}_+^*$ (une grandeur est toujours strictement positive pour les grecs), si (u_n) est une suite (strictement positive pour la même raison) telle que pour tout $n, u_{n+1} \leqslant \frac{u_n}{2}$, alors (en sous-entendant « à un moment, il restera... »), il existe N tel que pour tout $n \geqslant N, u_n < \varepsilon$.

C'est exactement dire (en langage moderne) que la suite (u_n) (qui est sous-géométrique de raison 2) converge vers 0...

- Archimède également utilise intuitivement une limite, lorsqu'il calcule une valeur approchée de π en approchant le cercle par des polygônes réguliers dont il calcule la circonférence.
- Au 17-ième siècle, même si la notion de limite semble assez claire, elle n'est pas bien définie, et tous les arguments de convergence sont expliqués qualitativement, avec assez peu de rigueur, comme le montre la citation de Leibniz en 1682, pour justifier l'égalité $\pi = 4\left[1 \frac{1}{3} + \frac{1}{5} \frac{1}{7} + \cdots\right]$.
- Il faut attendre Augustin Louis baron Cauchy pour avoir une définition précise (mais pas encore énoncée mathématiquement) de la limite, donnée dans son Cours d'Analyse de l'École Polytechnique (1821). Cauchy définit ce qu'on appelle maintenant les suites de Cauchy, permettant d'étudier (dans \mathbb{R}) la convergence de suites sans en connaître la limite.
 - Le Cours d'Analyse a été pour Cauchy l'occasion d'apporter rigueur et clarification à un grand nombre de notions jusque-là utilisées intuitivement. Dans ce sens, cet ouvrage a eu une importance capitale dans l'évolution de l'analyse.
- Il faut attendre la deuxième moitié du 19° siècle pour voir naître la définition moderne (énoncée mathématiquement) de la limite, grâce à Karl Weierstrass, à qui on doit également toutes les définitions similaires relatives aux limites et à la continuité des fonctions.

Intuitivement, une suite admet une limite ℓ si ses termes s'en approchent aussi près qu'on veut, sans plus s'en éloigner, donc si, quitte à prendre n suffisamment grand, u_n est une approximation aussi fine que l'on souhaite de ℓ . Nous formalisons cette définition de la sorte :

Définition 12.1.2 (limite d'une suite, convergence, divergence)

• Une suite $(u_n)_{n\in\mathbb{N}}$ à valeurs dans $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} admet une limite $\ell \in \mathbb{K}$ si et seulement si :

$$\forall \varepsilon > 0, \ \exists N \in \mathbb{N}, \ \forall n \geqslant N, \ u_n \in B(\ell, \varepsilon).$$

- Si $(u_n)_{n\in\mathbb{N}}$ admet une limite $\ell\in\mathbb{K}$, on dit qu'elle est convergente.
- Si $(u_n)_{n\in\mathbb{N}}$ n'admet aucun ℓ de \mathbb{K} comme limite, alors on dit que $(u_n)_{n\in\mathbb{N}}$ est divergente (dans \mathbb{K}).

Remarque 12.1.3

Comme nous l'avons vu dans un chapitre antérieur, cette définition est un cas particulier de la notion générale de limite d'une fonction. Il s'agit ici d'étudier la limite en $+\infty$. d'une fonction de $\mathbb N$ dans $\mathbb K$.

De même que dans le contexte général des limites de fonctions, cette définition est valable dans un contexte plus général : elle permet de définir la convergence d'une suite à valeurs dans n'importe quel espace métrique. En particulier, cela nous permet de parler de convergence de suites de vecteurs de \mathbb{R}^n , la distance considérée étant la distance euclidienne canonique (ou n'importe quelle distance définie à l'aide d'une norme; en effet, vous montrerez l'an prochain qu'en dimension finie, toutes les normes sont équivalentes, ce qui signifie plus ou moins qu'elles définissent les mêmes propriétés de convergence).

Comme dans la situation générale, on dispose de plusieurs caractérisations (réexpression par ε de la caractérisation métrique, et caractérisation topologique qui permet de généraliser la notion de convergence pour des suites à valeur dans un espace topologique).

Proposition 12.1.4 (Diverses caractérisations de la convergence)

Soit $(u_n)_{n\in\mathbb{N}}$ une suite réelle ou complexe. Les propositions suivantes sont équivalentes :

- (i) $(u_n)_{n\in\mathbb{N}}$ converge vers $\ell\in\mathbb{C}$;
- (ii) $\forall \varepsilon > 0, \ \exists N \in \mathbb{N}, \ \forall n \geqslant N, |u_n \ell| < \varepsilon;$
- (iii) pour tout voisinage V de ℓ , il existe N tel que pour tout $n \ge N$, $u_n \in V$.

Cela a déjà été vu dans le contexte plus général des limites de fonctions. On en rappelle rapidement les arguments :

- $(i) \Longrightarrow (ii) : u_n \in B(x, \varepsilon) \iff |u_n \ell| < \varepsilon$; Cela donne même l'équivalence entre les deux points.
- $(ii) \Longrightarrow (iii) : V$ étant un voisinage, il existe ε tel que $B(x, \varepsilon) \subset V$. Utiliser (ii) avec cet ε .
- $(iii) \Longrightarrow (i)$: utiliser (i) avec le voisinage $V = B(x, \varepsilon)$.

 \triangleright

Comme dans le cas des limites de fonctions, hormis pour l'inégalité $\varepsilon > 0$, on peut considérer indifféremment des inégalités strictes ou larges.

Nous nous plaçons désormais, par pure commodité, dans le cas de suites réelles. La plupart des résultats se généralisent au cas de suites complexes.

Dans le cas d'une suite réelle, on peut également définir une convergence vers les deux infinis :

Définition 12.1.5 (Limite $+\infty$ ou $-\infty$ d'une suite réelle)

Soit $(u_n)_{n\in\mathbb{N}}$ une suite réelle.

1. On dit que $(u_n)_{n\in\mathbb{N}}$ admet la limite $+\infty$ si et seulement si :

$$\forall A \in \mathbb{R}, \ \exists N \in \mathbb{N}, \ \forall n \geqslant N, u_n > A.$$

2. On dit que $(u_n)_{n\in\mathbb{N}}$ admet la limite $-\infty$ si et seulement si :

$$\forall A \in \mathbb{R}, \ \exists N \in \mathbb{N}, \ \forall n \geqslant N, u_n < A.$$

On remarquera qu'une suite tendant vers $+\infty$ est divergente dans \mathbb{R} , mais convergente dans $\overline{\mathbb{R}}$. Ainsi, suivant le point de vue, on pourra parler de divergence ou de convergence. En particulier, on rencontre aussi bien l'expression « $(u_n)_{n\in\mathbb{N}}$ converge vers $+\infty$ » que « $(u_n)_{n\in\mathbb{N}}$ diverge vers $+\infty$ ». Pour éviter toute controverse, on peut se contenter de dire : « $(u_n)_{n\in\mathbb{N}}$ tend vers $+\infty$ », ou encore « $(u_n)_{n\in\mathbb{N}}$ admet la limite $+\infty$ ».

Avertissement 12.1.6

Il existe des suites n'admettant pas de limite, même dans \mathbb{R} ! Par exemple $(-1)^n$. Attention à ne pas dire que cette suite admet deux limites 1 et -1 (confusion limite / valeur d'adhérence).

En effet, comme cas particulier d'un résultat vu pour les fonctions :

Théorème 12.1.7 (Unicité de la limite)

La limite d'une suite réelle ou complexe, si elle existe (dans $\overline{\mathbb{R}}$ ou dans \mathbb{C}), est unique.

On a déjà vu qu'en définissant un voisinage $V \subset \mathbb{R}$ de $+\infty$ comme étant un sous-ensemble de \mathbb{R} tel qu'il existe a vérifiant $]a, +\infty[\subset V]$, la caractérisation des limites par les voisinages permet d'unifier les définitions relatives aux limites finies et infinies :

Proposition 12.1.8 (Caractérisation par voisinage pour les limites dans $\overline{\mathbb{R}}$)

Soit $(u_n)_{n\in\mathbb{N}}$ une suite réelle, et $\ell\in\overline{\mathbb{R}}$. Alors $(u_n)_{n\in\mathbb{N}}$ admet la limite ℓ si et seulement si pour tout voisinage V de ℓ , il existe N tel que pour tout $n\geqslant N$, $u_n\in V$.

L'équivalence est déjà prouvée dans le cas d'une limite finie. Dans le cas d'une limite $+\infty$, elle provient du fait que tout voisinage de $+\infty$ contient un $]A, +\infty[$ et que réciproquement, $]A, +\infty[$ est un voisinage de $+\infty$. De même en $-\infty$.

Cette unification du fini et de l'infini permet souvent d'éviter de faire des distinctions de cas dans des démonstrations théoriques.

Définition 12.1.9 (Suite stationnaire)

Une suite (u_n) est dite stationnaire s'il existe $N \in \mathbb{N}$ tel que pour tout $n \ge N$, $u_n = u_N$.

Une suite stationnaire est toujours convergente (vers sa valeur de stationnement). La réciproque est bien sûr fausse, comme le montre l'exemple de la suite $\left(\frac{1}{n}\right)$.

Il est une situation dans laquelle on peut tout de même obtenir cette réciproque (mais attention à ne pas l'utiliser hors de ce cadre!)

Proposition 12.1.10 (Suites convergentes à valeurs entières)

Soit $(u_n)_{n\in\mathbb{N}}$ une suite à valeurs dans \mathbb{Z} . La suite (u_n) est convergente si et seulement si elle est stationnaire.

√ Éléments de preuve.

Réciproque évidente. Sens direct : considérer $\varepsilon < \frac{1}{2}$. Il ne peut y avoir qu'un entier dans la boule $B(\ell, \varepsilon)$.

I.2 Cas des suites complexes et vectorielles

Comme cas particulier du théorème similaire pour les fonctions :

Proposition 12.1.11 (Caractérisation de la convergence d'une suite complexe)

Soit $(u_n)_{n\in\mathbb{N}}$ une suite complexe. Alors $(u_n)_{n\in\mathbb{N}}$ converge dans \mathbb{C} si et seulement si $(\operatorname{Re}(u_n))_{n\in\mathbb{N}}$ et $(\operatorname{Im}(u_n))_{n\in\mathbb{N}}$ convergent dans \mathbb{R} , et dans ce cas :

$$\lim u_n = \lim \operatorname{Re}(u_n) + \mathrm{i} \lim \operatorname{Im}(u_n).$$

Plus généralement :

Proposition 12.1.12 (Caractérisation de la convergence d'une suite de vecteurs)

Soit $(u_n)_{n\in\mathbb{N}}$ une suite de vecteurs de \mathbb{R}^p . On note pour tout n, $\begin{pmatrix} u_{n,1} \\ \vdots \\ u_{n,p} \end{pmatrix}$ les coordonnées de u_n .

Alors $(u_n)_{n\in\mathbb{N}}$ converge dans \mathbb{R}^p si et seulement si pour tout $k\in[1,p]$, $(u_{n,k})_{n\in\mathbb{N}}$ converge dans \mathbb{R} . Dans ce cas:

$$\lim u_n = \begin{pmatrix} \lim u_{n,1} \\ \vdots \\ \lim u_{n,p} \end{pmatrix}.$$

De même que dans \mathbb{C} , en utilisant le fait que si $X = (x_1, \dots, x_p)$, pour la norme euclidienne canonique, $|x_i| \leq ||X||$, et réciproquement, par IT, $||X|| \leq |x_1| + \dots + |x_p|$.

Cela reste vrai pour toute autre norme, en utilisant un résultat que vous verrez l'année prochaine (équivalence des normes en dimension finie).

Ainsi, la convergence d'un vecteur équivaut à la convergence coordonnée par coordonnée. Là aussi, cela nous assure l'unicité de cette limite, sous réserve d'existence.

I.3 Premières propriétés des suites convergentes

Une propriété bien utile, notamment pour l'étude de suites récurrentes :

Proposition 12.1.13 (Limite d'un translaté)

 $Si(u_n)_{n\in\mathbb{N}} tend vers \ell$, alors $(u_{n+1})_{n\in\mathbb{N}} et(u_{n-1})_{n\in\mathbb{N}^*} aussi$.

Par voisinage. Si N convient pour $(u_n)_{n\in\mathbb{N}}$, N+1 convient pour (u_{n-1}) .

Plus généralement, pour tout $k \in \mathbb{N}$, $(u_{n+k})_{n \in \mathbb{N}}$ et $(u_{n-k})_{n \geqslant k}$ convergent alors vers ℓ .

Proposition 12.1.14

Toute suite convergente (dans \mathbb{R} ou \mathbb{C} , mais pas $\overline{\mathbb{R}}$) est bornée.

d Éléments de preuve.

À partir d'un certain rang, tous les termes restent dans une boule $B(\ell, 1)$. Les autres termes sont en nombre fini.

Enfin, en ne considérant que la moitié des inégalités présentes dans la définition, on obtient, dans le cas de suites réelles, la propriété suivante parfois plus simple à utiliser que la définition. Attention, comme on oublie ici la moitié des inégalités, chaque point de cette propriété est moins fort que la définition. La conjonction des deux points équivaut à la définition.

Proposition 12.1.15 (Lemme du tunnel)

Soit $(u_n)_{n\in\mathbb{N}}$ une suite, et $\ell\in\mathbb{R}$. Alors (u_n) converge vers ℓ ssi pour tout $(\ell',\ell'')\in\mathbb{R}^2$ tels que $\ell'<\ell<\ell''$, il existe $N\in\mathbb{N}$ tel que

$$\forall n \geqslant N, \quad \ell' < u_n < \ell''$$

Remarquer que $]\ell',\ell''[$ est voisinage de ℓ . Réciproquement, prendre en particulier $\ell'=\ell-\varepsilon$ et $\ell''=\ell+\varepsilon$.

Remarque 12.1.16

On utilise souvent ce lemme dans le sens direct, en n'utilisant qu'une des deux ingalités : si $(u_n)_{n\in\mathbb{N}}$ tend vers ℓ , alors (u_n) finit par dépasser n'importe quelle valeur $\ell' < \ell$, et de même, (u_n) finit par passer sous n'importe quelle valeur $\ell'' > \ell$.

Avertissement 12.1.17

Ce n'est évidemment pas vrai si $\ell' = \ell$, même au sens large. Une suite n'est pas forcément majorée (ou minorée) par sa limite. Elle peut tendre vers sa limite en faisant de petites oscillations, comme la suite $\left(\frac{(-1)^n}{n}\right)_{n\in\mathbb{N}^*}$ par exemple.

II Propriétés des suites liées à la convergence

II.1 Préambule : caractérisation séquentielle de la limite

Nous commençons par un résultat théorique, qui nous permettra de convertir tous les résultats qu'on obtiendra sur les limites de suites en des résultats similaires sur les limites des fonctions.

Théorème 12.2.1 (Caractérisation séquentielle de la limite)

Soit X un sous-ensemble de \mathbb{R} (ou \mathbb{R}^2), $f: X \longrightarrow \mathbb{R}$ (ou \mathbb{C}), et $a \in \overline{X}$. Alors f admet une limite ℓ en a si et seulement si pour toute suite (u_n) à valeurs dans X et telle que $u_n \to a$, on a $f(u_n) \to \ell$.

- - Sens direct : étant donné un voisinage V de ℓ , trouver un voisinage U de a exprimant la limite de f, puis appliquer la définition topologique de la limite de u_n avec ce voisinage U.
 - Sens réciproque : par la contraposée, supposer que f n'admet par la limite ℓ en a. L'exprimer par quantifications (en niant la définition topologique de la limite), en déduire une construction d'une suite $u_n \to a$, telle que $f(u_n)$ reste hors d'un certain voisinage contenant ℓ (coller u_n à a en choisissant des voisinages collant de plus en plus à a).

En particulier, en considérant $\ell = f(a)$, on obtient :

Théorème 12.2.2 (Caractérisation séquentielle de la continuité)

Soit X un sous-ensemble de \mathbb{R} , $f: X \longrightarrow \mathbb{R}$ (ou \mathbb{C}), et $a \in X$. Alors f est continue en a si et seulement si pour toute suite (u_n) à valeurs dans X et telle que $u_n \to a$, on a $f(u_n) \to f(a)$.

Remarque 12.2.3

Ces caractérisations séquentielles, outre leur utilisation théorique pour transférer les propriétés des limites de suites aux fonctions, sont souvent utilisées pour montrer qu'une fonction n'admet pas de limite. Il suffit pour cela :

- soit de trouver $u_n \to a$ telle que $f(u_n)$ n'a pas de limite;
- soit de trouver $u_n, v_n \to a$ telles que $f(u_n)$ et $f(v_n)$ ont des limites différentes.

Exemple 12.2.4

- Montrer que $x \mapsto \sin(x)$ n'a pas de limite en $+\infty$
- Montrer que $x\mapsto\cos\left(\frac{1}{\sqrt{x}}\right)$ n'admet pas de limite en 0.

II.2 Opérations sur les limites

Nous montrons maintenant sur les suites les différentes propriétés qu'on avait admises sur les limites de fonctions. La caractérisation séquentielle permet de faire le lien entre les deux.

 \triangleright

Théorème 12.2.5 (Opérations sur les limites finies)

Soit $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ deux suites réelles ou complexes convergentes, et λ et μ deux scalaires (réels ou complexes). Alors :

- 1. $(|u_n|)_{n\in\mathbb{N}}$ est convergente, et $\lim |u_n| = |\lim u_n|$;
- 2. $(\lambda u_n + \mu v_n)_{n \in \mathbb{N}}$ est convergente, et $\lim (\lambda u_n + \mu v_n) = \lambda \lim u_n + \mu \lim v_n$;
- 3. $(u_n v_n)_{n \in \mathbb{N}}$ est convergente, et $\lim (u_n v_n) = \lim u_n \cdot \lim v_n$;
- 4. $si \lim v_n \neq 0$, alors $v_n \neq 0$ à partir d'un certain rang; ainsi, $\left(\frac{u_n}{v_n}\right)$ est définie à partir d'un certain rang, est convergente, et $\lim \frac{u_n}{v_n} = \frac{\lim u_n}{\lim v_n}$.

√ Éléments de preuve.

- 1. Utiliser l'IT pour majorer $||u_n| |\ell||$.
- 2. Par commodité on peut étudier séparément la somme (couper ε en 2, en en réservant la moitié pour chaque suite) et la multiplication par un scalaire (considérer $\frac{\varepsilon}{\lambda}$; que dire si $\lambda = 0$?).
- 3. Écrire $u_n v_n \ell \ell' = u_n (v_n \ell') + \ell' (u_n \ell')$, et utiliser le fait que (u_n) est majorée. S'arranger pour majorer ensuite chaque membre par $\frac{\varepsilon}{2}$ en choisissant convenablement le epsilon de la définition des convergences de (u_n) et (v_n) .
- 4. D'après 3, on peut se limiter à l'étude de $\frac{1}{v_n}$. Faire la différence avec $\frac{1}{\ell}$, mettre au même dénominateur, et utiliser le fait que $v_n\ell$ est plus grand que $\frac{\ell^2}{2}$ pour n assez grand.

 \triangleright

Théorème 12.2.6 (Opérations impliquant des limites infinies)

Dans le cas où $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ sont des suites réelles, les résultats ci-dessus restent vrais si la limite de $(u_n)_{n\in\mathbb{N}}$ et/ou de $(v_n)_{n\in\mathbb{N}}$ est infinie, avec les règles arithmétiques suivantes (règles usuelles dans $\overline{\mathbb{R}}$):

$$a + \infty = +\infty; \qquad +\infty + \infty = +\infty; \qquad a \cdot (+\infty) = (\operatorname{sg}(a)) \infty \ (pour \ a \neq 0);$$
$$(\pm \infty) \cdot (\pm \infty) = \pm \infty; \qquad \frac{1}{\pm \infty} = 0, \qquad \frac{1}{0^+} = +\infty, \qquad \frac{1}{0^-} = -\infty.$$

- $a + \infty$: si $u_n \to a$ fini, (u_n) est bornée. Si M est un majorant de $|u_n|$, considérer A' = A M dans l'expression de la suite de limite ∞ .
- $\infty + \infty$: La première suite est positive à partir d'un certain rang. Appliquer directement la définition de la limite infinie sur la deuxième.
- $a \cdot \infty$, a > 0: Considérer n tel que $u_n > \frac{a}{2}$, puis appliquer la définition de la limite infinie avec $A' = \frac{2A}{a}$. S'adapte dans le cas a < 0.
- $+\infty \times +\infty$: de même, en plus simple : la première suite est minorée par 1 à partir d'un certain rang, la deuxième par A. S'adapte aux autres cas de signes.
- $\frac{1}{+\infty}$: Utiliser $A = \frac{1}{\varepsilon}$. S'adapte à $\frac{1}{-\infty}$.
- 1/0 : à vous de joueur un peu.

Avertissement 12.2.7 (Formes indéterminées)

En revanche, les opérations arithmétiques suivantes ne sont pas définies, et donnent des formes indéterminées (ayez des exemples en tête) :

$$\infty - \infty; \qquad 0 \cdot \infty; \qquad \frac{\infty}{\infty}; \qquad \frac{0}{0}$$

Aux règles précédentes, nous ajoutons la suivante :

Proposition 12.2.8 (Produit 0 × borné)

Soit $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ deux suites réelles ou complexes telles que $(u_n)_{n\in\mathbb{N}}$ tende vers 0 et $(v_n)_{n\in\mathbb{N}}$ soit bornée. Alors $(u_nv_n)_{n\in\mathbb{N}}$ tend vers 0.

Tant qu'on n'a pas le théorème d'encadrement, on revient à ε . Si M est un majorant de $|v_n|$, utiliser $\varepsilon' = \frac{\varepsilon}{M}$ pour exprimer la limite de (u_n) .

Les règles relatives à l'exponentiation découlent de la continuité de l'exponentielle, via la caractérisation séquentielle de la continuité, ou plutôt ici uniquement de l'implication la plus simple de cette caractérisation.

Proposition 12.2.9 (Passage à la limite pour les puissances)

Soit $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ deux suites réelles, (u_n) étant de plus strictement positive. On suppose que $u_n \to \ell$ et $v_n \to \ell'$, et que $(\ell, \ell') \notin \{(+\infty, 0), (0, 0), (1, +\infty), (1, -\infty)\}$. Alors :

$$u_n^{v_n} \longrightarrow \ell^{\ell'}.$$

Dans cette proposition, les règles d'exponentiation ont été étendues par les opérations suivantes dans $\overline{\mathbb{R}}$:

- $a^{+\infty} = 0$ si $a \in [0, 1[$,
- $a^{+\infty} = +\infty$ si $a \in]1, +\infty]$
- $a^{-\infty} = +\infty \text{ si } a \in [0, 1[$,
- $a^{-\infty} = 0$ si $a \in]1, +\infty],$
- $0^b = 0 \text{ si } b \in]0, +\infty].$

√ Éléments de preuve.

Se ramener au critère séquentielle de la continuité de l'exponentielle et du logarithme, ou de leurs limites aux bords du domaine.

Avertissement 12.2.10 (Formes indéterminées pour les puissances)

On notera les formes indéterminées relatives aux exponentiations :

$$\infty^0$$
, 0^0 et 1^∞ .

Exemple 12.2.11

Trouver des exemples illustrant ces formes indéterminées (se ramener à des formes indéterminées sur des produits)

Théorème 12.2.12 (Opérations sur les limites des fonctions)

Les règles ci-dessus restent valables pour les limites de fonctions en un point fini ou infini.

Par critère séquentiel. Le développer sur un cas suffira à se convaincre que cela s'adapte à tous les cas.

II.3 Limites et inégalités

Les suites considérées dans cette section sont réelles. Pour les suites complexes, l'utilisation de résultats de ce type nécessite de séparer les études de la partie réelle et de la partie imaginaire.

Théorème 12.2.13 (Conservation des inégalités larges)

Soit $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ deux suites réelles, et $N\in\mathbb{N}$ tels que : $\forall n\geqslant N,\ u_n\leqslant v_n$. Alors, si $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ admettent des limites dans $\overline{\mathbb{R}}$, $\lim_{n\to+\infty}u_n\leqslant\lim_{n\to+\infty}v_n$.

Par l'absurde, en notant ℓ la limite de (u_n) et ℓ' celle de (v_n) , si $\ell > \ell'$, considérer deux voisinages V et W de ℓ et ℓ' tels que W < V (ie pour tout x de W et y de V, x < y). En quoi cela contredit-il les hypothèses?

Remarque 12.2.14

Avant de passer à la limite dans une inégalité, il faut avoir justifié soigneusement l'existence des limites.

Avertissement 12.2.15

Les inégalités strictes ne se conservent pas!

Exemple 12.2.16

Pour tout $n \ge 1$, $0 < \frac{1}{n}$. Passez à la limite...

Théorème 12.2.17 (théorème de convergence par encadrement)

Soit $(u_n)_{n\in\mathbb{N}}$, $(v_n)_{n\in\mathbb{N}}$ et $(w_n)_{n\in\mathbb{N}}$, trois suites réelles, et $N\in\mathbb{N}$, tels que : $\forall n\geqslant N$, $u_n\leqslant v_n\leqslant w_n$. Si $(u_n)_{n\in\mathbb{N}}$ et $(w_n)_{n\in\mathbb{N}}$ convergent toutes deux vers une même limite finie, alors $(v_n)_{n\in\mathbb{N}}$ converge aussi, et

 $\lim v_n = \lim u_n = \lim w_n.$

√ Éléments de preuve.

Définition de la limite par ε , appliquée à (u_n) et (w_n) , puis trouver N commun aux deux (prendre le plus grand).

Dans le cas d'une limite infinie, on n'a pas besoin d'un encadrement. Suivant l'infini, une majoration ou une minoration suffit (pas besoin de contrôler le côté infini!) :

Théorème 12.2.18 (théorème de divergence par minoration ou majoration)

Soit $(u_n)n \in \mathbb{N}$, $(v_n)_{n \in \mathbb{N}}$ et $N \in \mathbb{N}$ tels que pour tout $n \geqslant N$, $u_n \leqslant v_n$.

- 1. Si $(u_n)_{n\in\mathbb{N}}$ tend vers $+\infty$, alors $(v_n)_{n\in\mathbb{N}}$ tend vers $+\infty$.
- 2. Si $(v_n)_{n\in\mathbb{N}}$ tend vers $-\infty$, alors $(u_n)_{n\in\mathbb{N}}$ tend vers $-\infty$.

Immédiat en appliquant la définition de $u_n \to +\infty$ (dans le premier cas).

Remarque 12.2.19

Les deux théorèmes ci-dessus donnent l'existence de la limite de $(v_n)_{n\in\mathbb{N}}$. Il n'est pas utile de l'avoir justifiée avant. Mais notamment pour le théorème de convergence par encadrement, il faut faire attention à la rédaction, et bien faire ressortir le fait que le théorème donne l'existence de la limite, avant d'écrire l'égalité sur les limites.

Avertissement 12.2.20

Ne surtout jamais présenter le théorème de convergence par encadrement comme un double passage à la limite dans les inégalités (à l'extrême rigueur si on connait déjà l'existence de toutes les limites, mais c'est maladoit)

Méthode 12.2.21 (Méthode de calcul de limites par majoration/minoration:)

- Si on parvient à trouver une majoration : $\forall n \geq N, |u_n \ell| \leq v_n$, où $(v_n)_{n \in \mathbb{N}}$ est une suite de limite nulle, alors $(u_n)_{n\in\mathbb{N}}$ tend vers ℓ .
- Si on parvient à minorer $(u_n)_{n\in\mathbb{N}}$ par une suite de limite $+\infty$, alors $(u_n)_{n\in\mathbb{N}}$ tend vers $+\infty$.
- Si on parvient à majorer $(u_n)_{n\in\mathbb{N}}$ par une suite de limite $-\infty$ alors $(u_n)_{n\in\mathbb{N}}$ tend vers $-\infty$.

- Exemples 12.2.22 1. $\lim_{n \to +\infty} \frac{(-1)^n}{n \ln n} = 0$;
 - 1. $\lim_{n \to +\infty} \frac{1}{n \ln n} = 0;$ 2. $\lim_{n \to +\infty} n^b a^n = +\infty \text{ si } a > 1; \qquad \lim_{n \to +\infty} n^b a^n = 0 \text{ si } |a| < 1;$
 - $3. \lim \frac{a^n}{n!} = 0;$

Dans deux des exemples ci-dessus apparait la méthode suivante :

Méthode 12.2.23 (Comparaison à une suite géométrique)

- Étudier l'existence et le cas échéant la valeur de $\lim \left| \frac{u_{n+1}}{u_n} \right|$.
- En cas d'existence, notons $\ell = \lim \left| \frac{u_{n+1}}{u_n} \right|$.
 - * Si $\ell < 1$, on peut majorer à partir d'un certain rang $(|u_n|)_{n \in \mathbb{N}}$ par une suite géométrique de raison $r \in]\ell, 1[$, et on en déduit que $(u_n)_{n \in \mathbb{N}}$ tend vers 0.
 - * Si $\ell > 1$, on peut minorer à partir d'un certain rang $(|u_n|)_{n \in \mathbb{N}}$ par une suite géométrique de raison $r \in]1, \ell[$, donc $(|u_n|)_{n \in \mathbb{N}}$ tend vers $+\infty$. Si (u_n) est de signe constant pour n assez grand, on en déduit sa convergence vers un des deux infinis, sinon, la suite ne converge pas dans $\overline{\mathbb{R}}$.
 - * Si $\ell = 1$, on ne peut pas conclure.

Exemple 12.2.24

Exemple 12.2.24 L'indétermination du cas $\ell = 1$ peut être illustré par les suites $\left(\frac{1}{n}\right)_{n \in \mathbb{N}^*}$ et $(n)_{n \in \mathbb{N}^*}$, ou par n'importe quelle suite convergeant vers une limite finie non nulle.

Théorème 12.2.25 (Conservation des inégalités et encadrement pour les fonctions)

Les théorèmes de conservation des inégalités et d'encadrement restent valables pour les limites de fonctions (en un point fini ou infini).

C'est toujours le critère séquentiel qui nous permet de passer des suites aux fonctions. Pour la conservation des inégalités, il suffit de considérer une suite (u_n) de limite a (car on a déjà l'existence des limites). Pour le théorème d'encadrement, il faut en revanche considérer toutes les suites $u_n \to a$, pour obtenir l'existence de la limite par critère séquentiel.

II.4 Suites monotones

Les notions de croissance, décroissance, croissance stricte, décroissance stricte et monotonie, découlent des définitions générales pour les fonctions.

On parlera de suite croissante à partir du rang N si les inégalités ne sont vérifiées qu'à partir du rang N, et de même pour la décroissance.

Une propriété importante des suites monotones, c'est qu'elles sont toujours convergentes dans $\overline{\mathbb{R}}$. Plus précisément :

Théorème 12.2.26 (Théorème de la convergence monotone)

Soit $(u_n)_{n\in\mathbb{N}}$ une suite réelle.

- 1. Si $(u_n)_{n\in\mathbb{N}}$ est croissante et majorée, alors $(u_n)_{n\in\mathbb{N}}$ converge dans \mathbb{R} .
- 2. Si $(u_n)_{n\in\mathbb{N}}$ est croissante et non majorée, alors $(u_n)_{n\in\mathbb{N}}$ diverge vers $+\infty$.
- 3. Si $(u_n)_{n\in\mathbb{N}}$ est décroissante et minorée, alors $(u_n)_{n\in\mathbb{N}}$ converge dans \mathbb{R} .
- 4. Si $(u_n)_{n\in\mathbb{N}}$ est décroissante et non minorée, alors $(u_n)_{n\in\mathbb{N}}$ diverge vers $-\infty$

C'est un cas particulier du théorème de convergence monotone pour les fonctions. Si on reprend la preuve de ce résultat (dans le cas d'une limite en $+\infty$, cela revient à considérer $\ell = \sup u_n$, puis à trouver n_0 tel que u_{n_0} soit proche de ℓ , et utiliser la croissance pour dire que c'est le cas de tout u_n , $n \geqslant n_0$.

Remarque 12.2.27

Puisque dans le cas d'une suite croissance majorée, $\ell = \sup_{n \in \mathbb{N}} u_n$, on a, assez logiquement, pour tout $n \in \mathbb{N}$, $u_n \leq \ell$ (ce qui résulte aussi du théorème de prolongement des inégalités). De plus, l'inégalité est stricte pour tout $n \in \mathbb{N}$, sauf si la suite est stationnaire.

Les inégalités sont bien sûr inversées pour des suites décroissantes.

Remarque 12.2.28

Ce théorème est faux si on se place dans \mathbb{Q} . Il est donc spécifique à \mathbb{R} . Il pourrait en fait être pris comme axiome de la construction de \mathbb{R} à la place de la propriété de la borne supérieure.

Remarque 12.2.29

Ce théorème est particulièrement utile pour établir la convergence de suites définies par une récurrence de type $u_{n+1} = f(u_n)$.

Exemple 12.2.30

Soit $(u_n)_{n\in\mathbb{N}}$ définie par $u_0=1$ et pour tout $n\in\mathbb{N},$ $u_{n+1}=\sqrt{1+u_n}$. Étudier la convergence de (u_n) .

II.5 Suites adjacentes

Définition 12.2.31 (Suites adjacentes)

Soit $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ deux suites réelles. On dit qu'elles sont adjacentes si et seulement si :

- 1. l'une est croissante et l'autre décroissante;
- 2. $(v_n u_n)_{n \in \mathbb{N}}$ tend vers 0.

Proposition 12.2.32 (Comparaison de deux suites adjacentes)

Soit $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ deux suites adjacentes (avec $(u_n)_{n\in\mathbb{N}}$ croissante et $(v_n)_{n\in\mathbb{N}}$ décroissante). Alors, pour tout $n\in\mathbb{N}$, $u_n\leqslant v_n$.

Sinon, on ne peut pas avoir $v_n - u_n \to 0$, cette différence étant décroissante.

Théorème 12.2.33 (Théorème des suites adjacentes)

Soit $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ deux suites réelles adjacentes. Alors $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ convergent, et $\lim_{n\to+\infty}u_n=\lim_{n\to+\infty}v_n$.

On se place dans le cas (u_n) croissante, (v_n) décroissante. Alors (u_n) est majorée (par exemple par v_0) et (v_n) est minorée. Utiliser le théorème de convergence des suites monotones, ainsi que la limite de leur différence, pour conclure.

Proposition 12.2.34

Si (u_n) et (v_n) sont adjacentes, de limite ℓ , alors pour tout $n \in \mathbb{N}$, $|v_n - \ell| \leq |v_n - u_n|$.

Le théorème des suites adjacentes est notamment utile pour l'étude des « séries alternées », c'est à dire de la limite de sommes $\sum_{k=0}^{n} (-1)^k a_k$, où (a_k) est décroissante de limite nulle :

Théorème 12.2.35 (Critère spécial de convergence des séries alternées, CSCSA)

Soit $\sum_{n\neq 0} (-1)^n a_n$ une série alternée, c'est à dire telle que (a_n) soit décroissante et de limite nulle.

Alors $\sum (-1)^n a_n$ converge, c'est à dire $\left(\sum_{n=0}^N (-a)^n a_n\right)_{N\in\mathbb{N}}$ admet une limite finie quand N tend vers $+\infty$. De plus, le « reste » de la série vérifie

$$\left| \sum_{k=n+1}^{+\infty} (-1)^k a_k \right| \leqslant a_{n+1}.$$

Montrer que si S_n désigne la somme partielle, (S_{2n}) et (S_{2n+1}) sont adjacentes. La majoration provient de la proposition 12.2.34

Remarque 12.2.36

Le théorème des suites adjacentes n'est pas vrai si on se place dans \mathbb{Q} . Encore une fois, on aurait pu choisir ce résultat comme axiome de la construction de \mathbb{R} .

II.6 Digression sur la construction de \mathbb{R}

Au cours de ce chapitre et des précédents, nous avons croisé un certain nombre de propriétés dont nous avons dit qu'elles auraient pu être prises comme axiome de \mathbb{R} . Voici un petit bilan.

Supposons que nous sachions définir l'ensemble \mathbb{R} , mais que nous ne connaissions aucune propriété de \mathbb{R} . Alors, on pourrait établir :

Théorème 12.2.37 (Propriétés équivalentes à la propriété fondamentale, HP)

Les résultats suivants sont équivalents :

- (i) La propriété de la borne supérieure
- (ii) La description des intervalles de \mathbb{R}
- (iii) Le théorème de convergence monotone
- (iv) Le théorème des suites adjacentes

On a déjà montré $(i) \Longrightarrow (ii), (i) \Longrightarrow (iii) \Longrightarrow (iv)$. On termine avec :

- $(ii) \Longrightarrow (i)$: Soit X non vide majoré. Considérer $I = \{x \mid \exists y \in X, x \leqslant y\}$. Montrer que I est un intervalle, et que sa borne supérieure est la borne supérieure de X.
- (iv) ⇒ (i): Procéder par dichotomie en partant de l'intervalle [x, M] où x ∈ X et M est un majorant de X. À chaque étape, garder la partie supérieure si elle contient un élément de X, la partie inférieure sinon. Les bornes des intervalles ainsi définis forment deux suites adjacentes, convergeant vers un réel ℓ. Justifier que ℓ est la borne supérieure de X.

 \triangleright

Pour pouvoir construire \mathbb{R} , il faut s'imposer l'une de ces propriétés, les autres en découlent. Nous avons admis la propriété de la borne supérieure, mais nous aurions pu faire un autre choix.

Note Historique 12.2.38

Les constructions les plus classiques sont celle de Richard Dedekind (basée sur les coupures, ce qui revient à peu près à la description des intervalles), et celle de Charles Méray (1869, basée sur les suites de Cauchy, je vous laisse vous renseigner vous-même sur cette notion importante, mais hors-programme)

II.7 Caractérisations séquentielles

Nous avons déjà caractérisé séquentiellement la limite de fonctions et la continuité. Nous donnons ici trois autres caractérisations.

Théorème 12.2.39 (Caractérisation séquentielle de la densité)

Soit X un sous-ensemble de \mathbb{R} . L'ensemble X est (partout) dense dans \mathbb{R} si et seulement si pour tout $x \in \mathbb{R}$, il existe $(u_n)_{n \in \mathbb{N}}$ une suite d'éléments de X tels que $(u_n)_{n \in \mathbb{N}}$ converge vers x.

- Sens direct : poser u_n dans $V_n \cap X$, où V_n est un voisinage de x collant de plus en plus à X. Comment choisir V_n ?
- Réciproque : en considérant a < b dans \mathbb{R} , et $x \in]a, b[$ quelconque, par exemple le milieu, appliquer la définition de la convergence de u_n vers x avec le voisinage]a, b[de x.

 \triangleright

Exemple 12.2.40

À l'aide de l'approximation décimale des réels, on montre ainsi que \mathbb{D} est dense dans \mathbb{R} . On peut retrouver de la sorte la densité de \mathbb{O} dans \mathbb{R} .

La démonstration de la caractérisation séquentielle de la densité montre qu'on peut choisir une suite dont tous les termes sont supérieurs à x, ou de façon symétrique, dont tous les termes sont inférieurs à x. On peut même faire un peu mieux :

Proposition 12.2.41

Soit X un sous-ensemble dense de \mathbb{R} . Alors pour tout $x \in \mathbb{R}$, il existe une suite croissante $(u_n)_{n \in \mathbb{N}}$ d'éléments de X tels que $\lim u_n = x$. On peut trouver de même une suite décroissante.

Théorème 12.2.42 (Caractérisation séquentielle de la borne supérieure)

Soit X un sous-ensemble non vide de \mathbb{R} . Alors $M \in \overline{\mathbb{R}}$ est la borne supérieure de X si et seulement si

- $1.\ M\ est\ un\ majorant\ de\ X$
- 2. il existe une suite d'éléments de X convergeant vers M.

- Sens réciproque immédiat par caractérisation par ε de la borne supérieure, et définition de la limite.
- Sens direct : utiliser la caractérisation de la borne sup avec des ε de plus en plus petits pour définir une suite qui colle à la borne supérieure.

III Suites extraites 89

On peut dans ce cas toujours trouver une suite *croissante* convergeant vers $\sup(X)$, et même *strictement* croissante si $\sup(X) \notin X$.

Théorème 12.2.43 (Caractérisation des fermés)

Un sous-ensemble F (de \mathbb{R} ou d'un espace métrique) est fermé si et seulement si toute suite convergente d'éléments de F converge vers une limite elle-même élément de F.

- Si F n'est pas fermé, considérer $x \notin F$ tel que toute boule $B(x, \varepsilon)$ recontre F. En considérant des ε de plus en plus petits, contruire $x_n \to x$, avec $x_n \in F$.
- S'il existe (x_n) dans F convergeant vers $\ell \notin F$, montrer que toute boule $B(\ell, \varepsilon)$ rencontre F.

Ceci se réexprime en disant que toutes les valeurs d'adhérence des suites de F sont encore dans F.

III Suites extraites

III.1 Définitions

Définition 12.3.1 (Suite extraite, fonction extractrice)

- 1. Soit $(u_n)_{n\in\mathbb{N}}$. Une suite extraite de $(u_n)_{n\in\mathbb{N}}$ est une suite $(v_n)_{n\in\mathbb{N}}$ telle qu'il existe $\varphi:\mathbb{N}\longrightarrow\mathbb{N}$ strictement croissante telle que pour tout $n\in\mathbb{N}$, $v_n=u_{\varphi(n)}$.
- 2. La fonction φ est appelée fonction extractrice de la suite extraite $(v_n)_{n\in\mathbb{N}}$.

Ainsi formellement, une suite extraite de (u_n) est une composée de $u_n : \mathbb{N} \longrightarrow \mathbb{R}$ par une fonction strictement croissante $\varphi : \mathbb{N} \longrightarrow \mathbb{N}$. En pratique, cela signifie que (v_n) est constitué de termes de (u_n) , dans l'ordre, et sans répétition d'indice.

Exemples 12.3.2

- 1. Les deux suites extraites des termes d'indice pair et des termes d'indice impair : $(u_{2n})_{n\in\mathbb{N}}$ et $(u_{2n+1})_{n\in\mathbb{N}}$.
- 2. $(u_{n^2})_{n\geqslant 0}$
- 3. Pas $(u_{n(n-1)})_{n\geqslant 0}$

La beauté poétique de la démonstration du lemme suivant nous laisse rêveurs :

Lemme 12.3.3 (Lemme des pics ou lemme du soleil levant, HP)

De toute suite réelle on peut extraire une suite monotone.

La ligne brisée des points du graphe de la suite (dans $\mathbb{N} \times \mathbb{R}$) forme un relief (les pics). L'éclairer par la droite par une lumière rasante (soleil levant). Un pic (ou son sommet) est éclairé s'il n'est caché par aucun autre (strictement) plus grand. S'il existe une infinité de pics éclairés, ils forment une suite décroissante. Sinon, se placer au-delà du dernier pic éclairé, et partir d'un pic, qui sera caché par un autre, lui-même caché par un troisième etc. Ces pics forment une suite croissante.

III.2 Suites extraites et convergence

Le comportement des suites extraites à l'infini donne des indications quant au comportement de la suite initiale. Si le comportement de la suite initiale determine le comportement d'une suite extraite, il est beaucoup plus délicat de faire chemin arrière, une suite extraite ne pouvant fournir qu'une information partielle sur la suite totale.

Théorème 12.3.4 (Théorème de convergence des suites extraites)

Soit $(u_n)_{n\in\mathbb{N}}$ une suite convergente dans $\overline{\mathbb{R}}$ ou dans \mathbb{C} . Alors toutes les suites extraites de $(u_n)_{n\in\mathbb{N}}$ sont convergentes, de même limite que (u_n) .

La stricte croissance de l'extractrice φ montre que pour tout n, $\varphi(n) \geqslant n$. Le résultat est alors immédiat par la définition de la limite (version topologique pour éviter les discussions). \triangleright

Réciproquement, on peut sous certaines conditions contrôler la convergence d'une suite à partir de la convergence d'un petit nombre de suites extraites. Le cas typique est le suivant :

Proposition 12.3.5

Soit $(u_n)_{n\in\mathbb{N}}$ une suite réelle ou complexe. Alors $(u_n)_{n\in\mathbb{N}}$ converge dans $\overline{\mathbb{R}}$ ou \mathbb{C} si et seulement si $(u_{2n})_{n\in\mathbb{N}}$ et $(u_{2n+1})_{n\in\mathbb{N}}$ convergent vers une même limite ℓ , et dans ce cas, $\lim u_n = \ell$.

C'est un cas particulier de la situation plus générale suivante :

Théorème 12.3.6

Soit $(u_n)_{n\in\mathbb{N}}$, et $(\varphi_i)_{i\in I}$ une famille **finie** d'extractrices, telle que $\bigcup_{i\in I} \varphi_i(\mathbb{N}) = \mathbb{N}$. Alors (u_n) converge vers ℓ si et seulement si pour tout $i\in I$, $(u_{\varphi_i(n)})$ converge vers ℓ .

Sens direct déjà acquis. Pour le sens réciproque, considérer $\varepsilon_i > 0$, associé à chaque φ_i , ainsi qu'un rang de validité N_i , puis se placer au delà du plus grand des N_i .

La notion de suite extraite est intimement liée à celle de valeur d'adhérence :

Définition 12.3.7 (valeur d'adhérence, Spé)

Soit $(u_n)_{n\in\mathbb{N}}$ une suite de réels (ou complexes). On dit que le réel (ou complexe, ou $\pm\infty$) x est une valeur d'adhérence de la suite $(u_n)_{n\in\mathbb{N}}$ s'il existe une suite extraite (v_n) de (u_n) telle que $\lim v_n = x$.

Ainsi, l'ensemble des valeurs d'adhérence d'une suite $(u_n)_{n\in\mathbb{N}}$ est l'ensemble de toutes les limites (finies) des suites extraites de $(u_n)_{n\in\mathbb{N}}$.

Proposition 12.3.8

Si $u_n \to \ell \in \overline{\mathbb{R}}$, alors ℓ est valeur d'adhérence de (u_n) et c'est la seule dans $\overline{\mathbb{R}}$.

Éléments de preuve.

C'est une réexpression du théorème de convergence des suites extraites.

On verra plus loin que cette proposition admet une réciproque.

III SUITES EXTRAITES 91

Proposition 12.3.9 (Caractérisation des valeurs d'adhérence)

Soit $(u_n)_{n\in\mathbb{N}}$ une suite réelle, et $a\in\overline{\mathbb{R}}$. Alors a est valeur d'adhérence de $(u_n)_{n\in\mathbb{N}}$ si et seulement si pour tout voisinage V de a, il existe une infinité d'indices n tels que $u_n\in V$, c'est-à-dire s'il existe un sous-ensemble infini I de \mathbb{N} tel que pour tout $n\in I$, $u_n\in V$.

- - Sens direct : utiliser la définition topologique de la convergence d'une suite extraite vers a.
 - Sens réciproque : construire φ par récurrence, en utilisant des voisinages V_n collant de plus en plus à a (distinguer le cas a fini et a infini). Le fait qu'il existe une infinité de termes u_k dans V_n nous assure l'existence d'un terme avec un indice strictement supérieur à $\varphi(n-1)$, cela nous donne la construction d'une suite extraite convergeant vers a.

 \triangleright

Corollaire 12.3.10 (Caractérisation d'une valeur d'adhérence finie)

Soit (u_n) une suite et $a \in \mathbb{R}$. Les propriétés suivantes sont équivalentes :

- (i) a est valeur d'adhérence de (u_n) ;
- (ii) pour tout $\varepsilon > 0$, $]a \varepsilon, a + \varepsilon[$ contient une infinité de termes de la suite (u_n) ;
- (iii) $\forall \varepsilon > 0, \forall N \in \mathbb{N}, \exists n \geqslant N, u_n \in]a \varepsilon, a + \varepsilon[$
- d Éléments de preuve.
 - $(i) \Longrightarrow (ii)$: conséquence immédiate de la caractérisation précédente.
 - $(ii) \Longrightarrow (i)$: utiliser la caractérisation précédente, en remarquant que tout voisinage de a contient un $|a \varepsilon, a + \varepsilon|$.
 - $(ii) \iff (iii)$ assez clair.

Corollaire 12.3.11 (Caractérisation d'une valeur d'adhérence infinie)

Soit (u_n) une suite. Alors $+\infty$ est valeur d'adhérence de (u_n) si et seulement si (u_n) n'est pas majorée.

- - Sens direct : caractérisation précédente avec des voisinages $]A, +\infty[$.
 - Sens réciproque : prendre V voisinage de $+\infty$ et $]A, +\infty[\subset V.$ Si $]A, +\infty[$ contient un nombre fini de termes de (u_n) , ces valeurs admettent un majorant ; les autres sont majorées par A. Donc (u_n) est majorée.

 \triangleright

Avertissement 12.3.12

Une suite peut ne pas avoir de valeur d'adhérence dans \mathbb{R} . Elle en a toujours une dans $\overline{\mathbb{R}}$. On peut montrer que l'unicité de la valeur d'adhérence dans $\overline{\mathbb{R}}$ caractérise la convergence de la suite.

Proposition 12.3.13 (Existence d'une valeur d'adhérence, HP)

Toute suite réelle (u_n) admet une valeur d'adhérence au moins dans $\overline{\mathbb{R}}$.

Appliquer le lemme des pics.

Théorème 12.3.14 (Caractérisation de la convergence par les valeurs d'adhérence)

Une suite (u_n) converge dans $\overline{\mathbb{R}}$ si et seulement si elle admet une unique valeur d'adhérence dans $\overline{\mathbb{R}}$.

Sens direct déjà étudié. Sens réciproque : pour tout voisinage V de a (unique valeur d'adhérence), seul un nombre fini de termes de u_n est hors de V (sinon on peut en extraire une suite convergente d'après la proposition précédente, et on obtient une deuxième valeur d'adhérence).

III.3 Théorème de Bolzano-Weierstrass

Le théorème suivant est important, car il donne l'existence d'une valeur d'adhérence non infinie.

Théorème 12.3.15 (Théorème de Bolzano-Weierstrass)

De toute suite réelle bornée on peut extraire une suite convergente.

C'est un cas particulier du théorème d'existence d'une valeur d'adhérence, cette valeur d'adhérence étant ici finie.

Afin de contourner l'utilisation du lemme des pics (HP), on en propose une démonstration directe, par dichotomie, en partant d'un intervalle [m, M] où m < M, et m et M sont un minorant et un majorant de (u_n) . On coupe l'intervalle en 2 en conservant à chaque fois la (ou une) moitié contenant une infinité de termes de la suite (u_n) . Le point limite est alors valeur d'adhérence.

Le cas d'une suite complexe se déduit du cas réel en deux étapes : on extrait une première suite telle que la partie réelle converge, puis de cette suite extraite on extrait une deuxième suite pour assurer la convergence de la partie imaginaire. On peut itérer le procédé pour davantage de coordonnées :

Corollaire 12.3.16 (Bolzano-Weierstrass dans \mathbb{C} ou \mathbb{R}^n)

Soit (u_n) une suite bornée dans \mathbb{C} ou dans \mathbb{R}^n . Alors (u_n) admet une valeur d'adhérence.

Extraire une première suite assurant la convergence de la partie réelle, et de cette suite, extraire une seconde assurant la convergence de la partie imaginaire.

Note Historique 12.3.17

Le théorème de Bolzano-Weierstrass a été énoncé par Bolzano en 1830, et démontré par Weierstrass en 1860. Weierstrass connaissait-il l'énoncé de Bolzano? Ce n'est pas certain, car ce dernier est interdit de publication par l'empire austro-hongrois, car trop critique vis-à-vis de l'ordre établi. Il en résulte que ses résultats ont été très peu diffusés.

Corollaire 12.3.18

Soit I = [a, b] un intervalle fermé borné de \mathbb{R} . Alors de toute suite $(u_n)_{n \in \mathbb{N}}$ à valeurs dans I on peut extraire une suite convergeant vers un réel $\ell \in I$.

C'est quasiment une réexpression du théorème de Bolzano-Weierstrass. Le seul point supplémentaire est l'appartenance $a \in I$, provenant du fait que l'intervalle est fermé (utiliser la conservation des inégalités par passage à la limite).

Cette propriété définit la notion d'ensemble compact

Définition 12.3.19 (Sous-ensemble compact, Spé)

Soit E un espace métrique et $K \subset E$. On dit que K est compact si de toute suite $(u_n)_{n \in \mathbb{N}}$ d'éléments de K, on peut extraire une suite convergeant vers un élément de K.

Ainsi, les intervalles fermés bornés de \mathbb{R} sont des sous-ensembles compacts de \mathbb{R} . On peut montrer plus généralement que les sous-ensembles compacts de \mathbb{R} sont exactement les sous-ensembles fermés et bornés de \mathbb{R} (ce qui inclut en particulier les intervalles fermés bornés).

IV Étude de suites particulières

Nous étudions dans cette section un certain nombre de suites d'un type qu'on rencontre souvent, et qu'il faut savoir étudier.

IV.1 Suites définies par une récurrence affine

Nous étudions ici les suites définies par une relation $u_{n+1} = au_n + b$. Une telle suite est entièrement déterminée par la donnée de cette relation, et la donnée de son terme initial u_0 (ou éventuellement u_N , si la suite ne débute pas au rang 0).

Les suites arithmétiques et les suites géométriques en sont des cas particuliers, par lesquels nous commencerons cette étude.

Définition 12.4.1 (Suite arithmétique)

Une suite arithmétique $(u_n)_{n\in\mathbb{N}}$ est une suite vérifiant une relation de récurrence du type $u_{n+1}=u_n+b$.

Proposition 12.4.2 (Explicitation des suites arithmétiques)

Soit $(u_n)_{n\in\mathbb{N}}$ une suite arithmétique, vérifiant la relation $u_{n+1}=u_n+b$. Alors :

- pour tout $n \in \mathbb{N}$, $u_n = u_0 + nb$;
- plus généralement, pour tout $(n,m) \in \mathbb{N}^2$, $u_n = u_m + (n-m)b$,
- ou encore, pour tout $(m,k) \in \mathbb{N}^2$, $u_{m+k} = u_m + kb$.

Récurrence immédiate, ou télescopage.

Définition 12.4.3 (Suites géométriques)

Une suite $(u_n)_{n\in\mathbb{N}}$ est une *suite géométrique* si et seulement elle vérifie pour tout $n\in\mathbb{N}$, une relation du type $u_{n+1}=au_n$.

Proposition 12.4.4 (Explicitation des suites géométriques)

Soit $(u_n)_{n\in\mathbb{N}}$ une suite géométrique, vérifiant la relation $u_{n+1}=au_n$. Alors :

• $\forall n \in \mathbb{N}, \ u_n = u_0 \cdot a^n ;$

- plus généralement, pour tout m < n, $u_n = u_m a^{n-m}$,
- ou encore, pour tout $(m,k) \in \mathbb{N}^2$, $u_{m+k} = u_m a^k$.

d Éléments de preuve.

Récurrence immédiate, ou télescopage multiplicatif.

Définition 12.4.5 (Suites arithmético-géométriques)

Une suite $(a_n)_{n\in\mathbb{N}}$ est dite arithmético-géométrique si elle vérifie une relation du type $u_{n+1} = au_n + b$, avec $a \neq 1$.

Théorème 12.4.6 (Structure)

- (i) L'ensemble des suites vérifiant la relation de récurrence $u_{n+1} = a_n u_n + b_n$ où (b_n) est une suite fixée, est un sous-espace affine de l'ensemble des suites, obtenu comme somme d'une solution particulière, et de l'ensemble des suites solution de l'équation l'équation homogène $u_{n+1} = a_n u_n$.
- (ii) Ainsi, $(u_n) = (v_n) + (w_n)$ où (v_n) est une solution particulière, et (w_n) est une solution quelconque de l'équation homogènre $u_{n+1} = a_n u_n$.
- (iii) Assez fréquemment (a_n) est constante de valeur a. Dans ce cas, (w_n) est une suite géométrique de raison a.

La structure affine se traduit par le fait que l'ensemble des solutions est obtenu en ajoutant une solution particulière à l'ensemble des solutions de la relation homogène associée, et que l'ensemble des solutions de la relation homogène est non vide et stable par combinaison linéaire.

√ Éléments de preuve.

- L'ensemble des solutions de l'équation homogène est clairement non vide (contient la suite nulle) et stable par CL.
- si (u_n) est une solution particulière, (u_n) est une solution ssi $(u_n v_n)$ est solution de la relation homogène associée.

Ce résultat s'applique notamment dans le cas où (b_n) est constant (cas des suites arithmético-géométriques):

Méthode 12.4.7 (Explicitation des suites arithmético-géométriques)

- Rechercher une solution particulière constante (c'est un point fixe de la relation)
- Ajouter la solution générale de la relation homogène (c'est-à-dire une suite géométrique)

Exemple 12.4.8

Expliciter la suite (u_n) telle que $u_0 = 2$ et $\forall n \in \mathbb{N}, u_{n+1} = 3u_n - 2$.

Méthode 12.4.9 (Explicitation de $u_{n+1} = au_n + \lambda^n P(n)$, P polynôme)

- Si $\lambda \neq a$. Chercher une solution sous la même forme $\lambda^n Q(n)$, avec Q de même degré que P. Procéder par identification des coefficients.
- Si $\lambda = a$, chercher la solution sous la forme $n\lambda^n Q(n)$, Q de même degré que P.

Exemple 12.4.10

- 1. Explicitation de $u_{n+1} = 3u_n + 2^n(n^2 1), u_0 = 2$.
- 2. Explicitation de $u_{n+1} = 2u_n + n2^n$, $u_0 = 1$.

IV.2 Suites définies par une relation linéaire d'ordre k

Définition 12.4.11 (Suites récurrentes linéaires d'ordre k à coefficients constants)

Soit $(u_n)_{n\in\mathbb{N}}$. On dit que (u_n) est une suite récurrente linéaire d'ordre k à coefficients constants si (u_n) vérifie une relation du type :

$$\forall n \in \mathbb{N}, \ u_{n+k} = a_{k-1}u_{n+k-1} + \dots + a_1u_{n+1} + a_0u_n.$$

où $(a_0, ..., a_{k-1}) \in \mathbb{R}^k$.

Une suite récurrente d'ordre k est entièrement déterminée par sa relation de récurrence et la donnée de ses k premiers termes.

Définition 12.4.12 (Polynôme caractéristique d'une récurrence linéaire)

Soit $(u_n)_{n\in\mathbb{N}}$ une suite récurrente linéaire, de relation

$$u_{n+k} = a_{k-1}u_{n+k-1} + \dots + a_1u_{n+1} + a_0u_n$$
 soit: $u_{n+k} - a_{k-1}u_{n+k-1} - \dots - a_1u_{n+1} - a_0u_n = 0$

Le polynôme caractéristique associé à la suite récurrente $(u_n)_{n\in\mathbb{N}}$ est le polynôme

$$P(X) = X^{k} - a_{k-1}X^{k-1} - \dots - a_{1}X - a_{0}.$$

La recherche des racines du polynôme caractéristique permet d'expliciter les suites récurrentes linéaires. Nous nous contentons d'énoncer et démontrer le cas de récurrences linéaires d'ordre 2, le seul au programme.

Théorème 12.4.13 (Explicitation des suites récurrentes linéaires d'ordre 2)

Soit $(u_n)_{n\in\mathbb{N}}$ une suite récurrente linéaire d'ordre 2, et P son polynôme caractéristique, de degré 2.

1. Si P admet deux racines distinctes (réelles ou complexes) r et s, alors il existe des scalaires (réels ou complexes) λ et μ tels que

$$\forall n \in \mathbb{N}, \quad u_n = \lambda r^n + \mu s^n.$$

2. Si P admet une racine double r, alors il existe des scalaires (réels ou complexes) λ et μ tels que

$$\forall n \in \mathbb{N}, \quad u_n = (\lambda + \mu n)r^n.$$

- 1. Montrer que (r^n) et (s^n) , ainsi que toutes leurs combinaisons linéaires, vérifient la relation de récurrence. Montrer ensuite qu'on peut trouver λ et μ tel que la relation $u_n = \lambda r^n + \mu r^n$ soit vraie pour n = 0 et n = 1, puis propager l'égalité par récurrence (ce qui revient à dire qu'une suite vérifiant une telle relation est entièrement déterminée par ses deux premiers termes).
- 2. De même avec les suites (r^n) et (nr^n) cette fois.

Méthode 12.4.14 (Explicitation d'une récurrence d'ordre 2)

- Déterminer le polynôme caractéristique, et rechercher ses racines.
- Suivant la situation, donner la forme de l'explicitation, avec les paramètres λ et μ
- Écrire la relation obtenue pour les deux termes initiaux (généralement n=0 et n=1). cela fournit un système de deux équations à deux inconnues λ et μ .
- Résoudre ce système pour trouver les valeurs de λ et μ .

Exemple 12.4.15 (Suites de Fibonacci)

Expliciter la suite de Fibonacci, définie par définie par $F_0 = 0$, $F_1 = 1$ et pour tout $n \in \mathbb{N}$, $F_{n+2} = F_{n+1} + F_n$.

Note Historique 12.4.16

Leonardo Fibonacci (1175-1250), aussi appelé Leonardo Pisano, ou en français, Léonard de Pise, est un mathématicien italien, dont l'enfance passée en Kabylie a contribué à l'introduction en Europe des chiffres arabes. Il a écrit plusieurs recueils de problèmes numériques. Sa contribution aux mathématiques la plus célèbre reste la suite portant son nom. Elle aurait été introduite par Fibonacci en vue de dénombrer les lapins de son élevage en fonction du nombre de lapins des saisons précédentes. C'est la première vraie formule de récursion de l'histoire des mathématiques.

« Fibonacci » n'est pas son vrai nom. Littéralement, cela signifie « fils de Bonacci », son père s'appelant Guilielmo Bonacci. Le nom « Fibonacci » lui a été donné à titre posthume.

Ce résultat se généralise bien au cas de suites récurrences linéaires d'ordre k, lorsque les racines sont deux à deux distinctes. Nous donnons le résultat, mais nous nous dipenserons de la preuve, pour laquelle nous n'avons pas encore tous les outils d'algèbre linéaire adéquats.

Théorème 12.4.17 (Explicitation des suites récurrentes linéaires, cas particulier, HP, admis)

Si P admet exactement k racines distinctes 2 à 2 (réelles ou complexes) r_1, \ldots, r_k , alors il existe des complexes $\lambda_1, \ldots, \lambda_k$ tels que :

$$\forall n \in \mathbb{N}, \ u_n = \lambda_1 r_1^n + \dots + \lambda_k r_k^n = \sum_{i=1}^k \lambda_i r_i^n.$$

Les complexes $\lambda_1, \ldots, \lambda_k$ sont déterminés par les conditions initiales, par la résolution d'un système de k équations à k inconnes.

La formule générale consiste alors à rajouter des facteurs polynomiaux multipliant les suites géométriques, dont les degrés sont strictement inférieurs à la multiplicité de la racine correspondante dans le polynôme caractéristique.

De même que pour le cas des suites d'ordre 1, on a un théorème de structure lorsqu'on ajoute un second membre. A voir comme une généralisation des suites arithmético-géométriques.

Théorème 12.4.18 (Structure, HP)

Soit (b_n) une suite, et les deux relations de récurrence suivantes :

- $(E): u_{n+k} = a_{k-1}u_{n+k-1} + \dots + a_1u_{n+1} + a_0u_n + b_n$
- $(EH): v_{n+k} = a_{k-1}v_{n+k-1} + \cdots + a_1v_{n+1} + a_0v_n.$

Alors l'ensemble des suites vérifiant (E) est un sous-espace affine de l'ensemble des suites, obtenu comme somme d'une solution particulière, et du sous-espace vectoriel des solutions de (EH).

 \triangleright

Même principe que dans le cas de récurrences d'ordre 1.

Méthode 12.4.19 (HP, mais parfois utile)

Lorsque $b_n = \lambda^n Q(n)$ $(Q \in \mathbb{C}[X])$, on dispose d'une méthode similaire à celle décrite pour le cas des équations différentielles. Plus précisément, si P est le polynôme caractéristique, et m la multiplicité de λ comme racine de P, on recherchera une solution particulière sous la forme $n^m R(n)\lambda^n$, où R est un polynôme de même degré que Q.

IV.3 Suites définies par une récurrence $u_{n+1} = f(u_n)$

Enfin, nous donnons quelques méthodes d'étude de suites récurrentes d'ordre 1 non linéaires, c'est-à-dire de suites définies par une relation du type $u_{n+1}=f(u_n)$, pour une certaine fonction f. Nous dirons dans ce paragraphe simplement « suite récurrente » pour désigner une telle suite. On parle aussi de système dynamique discret. Remarquez qu'une telle suite n'est pas toujours bien définie : il peut arriver qu'un terme u_n sorte du domaine de définition de f, et qu'on ne puisse plus appliquer la relation de récurrence. Une des premières tâches est souvent de vérifier que $(u_n)_{n\in\mathbb{N}}$ est bien définie. Si souvent, cette justification est intuitivement évidente, son principe est basé sur la récurrence : si on parvient à définir le terme u_n , on peut encore définir le terme u_{n+1}

Nous nous intéressons en particulier à la limite de (u_n) . La recherche de la limite d'une suite récurrente s'opère toujours sur le même principe.

Méthode 12.4.20 (Étude de la limite d'une suite récurrente)

- Étudier l'existence de la limite :
 - * s'assurer que la suite est bien définie,
 - * étudier sa monotonie, et obtenir l'existence de la limite à l'aide par exemple du théorème de la limite monotone.
- une fois assurée l'existence de la limite, déterminer les valeurs possibles de cette limite ℓ en passant à la limite dans la relation de récurrence :

Si f est continue, soit ℓ vérifie $f(\ell) = \ell$, soit ℓ est un bord ouvert du domaine de f.

- \bullet Déterminer, parmi l'ensemble des valeurs possibles de ℓ laquelle est la bonne.
- Déterminer les points fixes de f peut déjà s'avérer utile pour la première étape (aide à la recherche d'intervalles stables, de majorants et de minorants). Commencer par cela peut être efficace.

Nous donnons quelques techniques utiles pour la première étape de cette méthode.

Définition 12.4.21 (Intervalle stable)

On dit qu'un intervalle I est stable par f si f est définie sur I (i.e. $I \subset D_f$) et $f(I) \subset I$.

Remarque 12.4.22

La recherche des points fixes aide souvent à déterminer des intervalles stables.

Théorème 12.4.23 (CS pour que (u_n) soit bien définie)

Si I est un intervalle stable par f, et si $u_0 \in I$, alors $(u_n)_{n \in \mathbb{N}}$ est bien définie.

Montrer par récurrence que u_n est défini, et $u_n \in I$. Comme I est dans le domaine, on peut alors continuer.

Évidemment, si on parvient à trouver un indice N tel que u_N soit dans un intervalle stable, on parvient à la même conclusion.

Les intervalles stables permettent aussi souvent d'étudier les variations de $(u_n)_{n\in\mathbb{N}}$. La situation la plus simple est la suivante (et assez facile à détecter graphiquement):

Proposition 12.4.24 (Étude des variations lorsque f – id est de signe constant)

Supposons f – id de signe constant sur un intervalle stable I, et $u_0 \in I$. Alors (u_n) est monotone, de sens de monotonie déterminé par le signe de f – id.

D'après ce qui précède, pour tout $n, u_n \in I$. Appliquer f pour comparer u_{n+1} à u_n .

Lorsque f admet des propriétés de monotonie sur un intervalle stable, on peut aussi conclure assez facilement.

Proposition 12.4.25 (Étude des variations lorsque f est croissante)

Supposons f croissante sur un intervalle stable I, et $u_0 \in I$ (peut s'adapter si on n'a pas cette inclusion dès le rang initial). Alors (u_n) est monotone. On trouve le sens de monotonie en comparant u_0 et u_1 .

√ Éléments de preuve.

Tout d'abord, tous les termes u_n sont dans I. On peut alors propager par récurrence l'inégalité initiale entre u_0 et u_1 , en appliquant la fonction croissante f.

Proposition 12.4.26 (Étude des variations lorsque f est décroissante)

Supposons f décroissante sur un intervalle stable I, et $u_0 \in I$ (peut s'adapter si on n'a pas cette inclusion dès le rang initial). Alors (u_{2n}) et (u_{2n+1}) sont monotones, de sens de monotonie opposé. On trouve les sens de monotonie en comparant u_0 et u_2 .

Appliquer le résultat précédent à $f \circ f$, décrivant la récurrence associée aux suites (u_{2n}) et (u_{2n+1}) .

Avertissement 12.4.27

Dans le cas d'une fonction f décroissante, il ne suffit pas de comparer u_0 et $u_1 : u_0 < u_1$ ne suffit pas pour établir la croissance de (u_{2n}) et la décroissance de (u_{2n+1}) . Ce serait suffisant si on savait de plus que ces deux suites admettent une même limite, mais ce n'est en général pas le cas.

Remarque 12.4.28

Lorsque f est croissante, l'argument ci-dessus suffit à obtenir la convergence dans $\overline{\mathbb{R}}$. Il suffit de majorer ou minorer suivant le cas pour obtenir la convergence vers \mathbb{R} . La connaissance des points fixes de f peut aider à trouver des majorants. En effet, si f est croissante, et c un point fixe tel que $u_0 \leq c$, on peut propager cette inégalité aux rangs suivants. Ainsi, on cherchera en général à majorer ou minorer par des points fixes.

Avertissement 12.4.29

Ainsi, si f est décroissante sur un intervalle stable, les deux suites extraites (u_{2n}) et (u_{2n+1}) sont monotones de sens de variation opposés. Cela ne suffit pas pour prouver que $(u_n)_{n\in\mathbb{N}}$ converge. Pour cela, il faut encore s'assurer que (u_{2n}) et (u_{2n+1}) ont même limite. Les limites de ces deux suites sont à rechercher parmi les points fixes de $f \circ f$. Si $f \circ f$ a deux points fixes distincts, on peut très bien avoir convergence de (u_{2n}) vers l'un des deux et de (u_{2n+1}) vers l'autre. Essayez de construire un exemple graphique.

Avertissement 12.4.30

Les points fixes de f sont évidemment points fixes de $f \circ f$, mais la réciproque est fausse en général! On n'a qu'une inclusion de l'ensemble des points fixes de f dans l'ensemble des points fixes de $f \circ f$. Ainsi, pour trouver les limites de (u_{2n}) et (u_{2n+1}) , il ne faut pas se contenter de considérer les points fixes de f. L'équation permettant de calculer les points fixes de $f \circ f$ peut parfois être un peu compliqué, mais on peut parfois s'aider de la connaissance de certaines solutions particulières pour la simplifier (les points fixes de f sont solutions).

Exemple 12.4.31

Étude de la suite $u_0 \in \mathbb{R}, \forall n \in \mathbb{N}, u_{n+1} = u_n^2 - u_n$.

Enfin, une dernière technique d'étude importante, permettant notamment d'apprécier ensuite la vitesse de convergence, est basée sur l'IAF, et plus particulièrement sur le caractère lipschitzien.

Proposition 12.4.32

Soit f une application contractante sur un intervalle I, de facteur de Lipschitz k < 1, et (u_n) une suite récurrente à valeurs dans I, définie par f. Soit ℓ un point fixe de f sur I. Alors, pour tout $n \in \mathbb{N}$,

$$|u_n - \ell| \leqslant k^n |u_0 - \ell|.$$

En particulier, $u_n \longrightarrow \ell$.

On peut même montrer (par exemple par l'étude de la convergence de la série télescopique) $\sum u_{n+1} - u_n$) que sous les hypothèses précédentes, f admet toujours un (et un seul) point fixe (théorème du point fixe de Banach-Picard). Ainsi, une suite définie par récurrence à partir d'une fonction f contractante sur un intervalle stable est toujours convergente si u_0 est dans cet intervalle stable.

Propriétés des fonctions continues ou dérivables sur un intervalle

Je me détourne avec effroi et horreur de cette plaie lamentable des fonctions continues qui n'ont point de dérivées.

Charles Hermite

Nous étudions dans ce chapitre les premières propriétés de régularité d'une fonction, à savoir la continuité, et la dérivabilité. Les études locales ayant déjà été faites en grande partie dans un chapitre antérieur, notre but sera essentiellement, après quelques rappels ou précisions, d'étudier des propriétés plus globales des fonctions continues ou dérivables sur tout un intervalle.

Dans tout ce chapitre, on considère des applications f définies sur un intervalle I et à valeurs dans \mathbb{R} .

I Fonctions continues sur un intervalle

I.1 Fonctions continues et continues par morceaux

Soit I un intervalle de \mathbb{R} .

Définition 13.1.1 (Fonction continue sur un intervalle)

On dit que f est continue sur I si et seulement si f est continue en tout a de I.

Définition 13.1.2 (Fonction continue par morceaux sur un intervalle)

- 1. On dit que f est continue par morceaux sur un segment I = [a, b] si et seulement s'il existe des réels $a = x_0 < x_1 < \dots < x_n = b$ tels que :
 - (i) f soit continue sur chaque intervalle $]x_i, x_{i+1}[, i \in [0, n-1]]$
 - (ii) f admette des limites à gauche finies en x_1, \ldots, x_n et des limites à droite finies en x_0, \ldots, x_{n-1} .
- 2. On dit que f est continue par morceaux sur un intervalle I quelconque, si pour tout segment $J \subset I$, f est continue par morceaux sur J.

Exemples 13.1.3

1. La fonction $x \mapsto \lfloor x \rfloor$ est continue par morceaux sur \mathbb{R} .

- 2. La fonction $x \mapsto \frac{1}{x}$ sur \mathbb{R}^* prolongée par f(0) = 0 est-elle continue par morceaux sur \mathbb{R} ?
- 3. La fonction $x \mapsto \left\lfloor \frac{1}{x} \right\rfloor$ est-elle continue par morceaux sur [0,1]?

Nous n'étudierons pas tellement les fonctions continues par morceaux dans ce chapitre. Nous les retrouverons plus tard, lorsque nous définirons l'intégrale de Riemann.

I.2 Théorème des valeurs intermédiaires (TVI)

Une première propriété importante des fonction continues sur un intervalle est le théorème des valeurs intermédiaires.

Dans ce qui suit, par convention, et dans un souci d'unification des énoncés, $f(+\infty)$ désigne $\lim_{x\to+\infty} f(x)$ dans le cas où cette limite existe, et de même pour $f(-\infty)$.

Théorème 13.1.4 (TVI, version 1 : existence d'un zéro)

Soit f une fonction continue sur un intervalle I d'extrémités a et b dans $\overline{\mathbb{R}}$ (avec existence des limites dans le cas de bornes infinies). Alors, si f(a) > 0 et f(b) < 0 (ou l'inverse), il existe $c \in]a,b[$ tel que f(c) = 0

Méthode 1 : considérer $c = \sup\{x \in [a, b] \mid f(x) > 0\}$, vérifier f(c) = 0 et $c \in]a, b[$. Attention à bien justifier c non infini, dans le cas où a ou b est infini.

Méthode 2 : par dichotomie, après s'être ramené au cas de bornes finies.

Avertissement 13.1.5

Attention, c n'a aucune raison d'être unique!

Théorème 13.1.6 (TVI, version 2 : réalisation des valeurs intermédiaires)

Soit f une fonction continue sur un intervalle I, et soit $M = \sup_{x \in I} f(x)$ et $m = \inf_{x \in X} f(x)$. Alors f prend toutes les valeurs de l'intervalle $[m, M[: \forall x_0 \in]m, M[, \exists c \in I, f(c) = x_0.$

Appliquer la version 1 à $f - x_0$.

Théorème 13.1.7 (TVI, version 3 : image d'un intervalle)

L'image d'un intervalle quelconque par une fonction continue est un intervalle.

d Éléments de preuve.

Obtenir la convexité de Im(f) à partir de la version 2.

Le théorème des valeurs intermédiaire affirme plus ou moins que pour passer d'un côté à l'autre d'une droite, sans lever le crayon, on est bien obligé à un moment de croiser cette droite!

Note Historique 13.1.8

Le théorème des valeurs intermédiaires, aussi appelé théorème de Bolzano, a été démontré par Bolzano à l'aide de la borne supérieure, mais à un moment où, la contruction de \mathbb{R} n'ayant pas encore été précisée, les propriétés fondamentales de \mathbb{R} restaient mal fondées. Cauchy dans son cours d'analyse, donne le résultat sans preuve rigoureuse, se contentant d'un dessin. Peano prouve le résultat par dichotomie à la fin du $19^{\rm e}$ siècle.

I.3 Continuité uniforme

La notion de continuité traduit le fait que localement, f(x) approche f(a) à ε près fixé arbitrairement à l'avance. L'aspect local de cette approximation se traduit par ε intervenant dans la définition : ε nous donne le domaine de validité de l'approximation. Plus ε est petit, plus il faut rester proche de x pour que l'approximation soit correcte. La taille de ce domaine de validité peut d'ailleurs dépendre de x. En général, il n'y a pas de raison de pouvoir trouver un réel η convenant pour toutes les valeurs de x du domaine de définition d'une fonction continue. Cela signifie que, une marge ε étant donnée, il peut exister des points pour lesquels il faudra rester très très proche (infiniment proche si on fait tendre x vers un des bords du domaine) de x pour que l'approximation à ε près reste vraie.

Exemples 13.1.9

- 1. $x \mapsto e^x \operatorname{sur} \mathbb{R}$.
- 2. $x \mapsto \frac{1}{x} \text{ sur } [0, 1].$

Si pour tout ε , on peut trouver un η convenable pour toute valeur de x, on parlera de continuité uniforme. Remarquez qu'il ne s'agit de rien de moins que d'une interversion de quantificateurs par rapport à la définition de la continuité sur un domaine.

Définition 13.1.10 (Continuité uniforme)

Soit f une fonction définie sur un sous-ensemble X de \mathbb{R} . On dit que f est uniformément continue sur X si :

$$\forall \varepsilon > 0, \exists \eta > 0, \forall (x, y) \in X^2, |x - y| < \eta \Longrightarrow |f(x) - f(y)| < \varepsilon.$$

Le réel η est appelé module de continuité uniforme de f pour l'approximation ε

Proposition 13.1.11 (Critère séquentiel de la continuité uniforme)

Soit f une fonction définie sur un sous-ensemble X de \mathbb{R} . Les deux propriétés suivantes sont équivalentes :

- (i) f est uniformément continue sur X
- (ii) Pour toutes suites (x_n) et (y_n) d'éléments de X telles que $x_n y_n \to 0$, on a aussi $f(x_n) f(y_n) \to 0$.

d Éléments de preuve.

Le sens direct est une conséquence immédiate de la définition. de la continuité uniforme et de la convergence de suites. Réciproquement, raisonner par la contraposée.

Les exemples précédents montrent qu'il existe des fonctions continues sur un intervalle sans y être uniformément continues. En revanche, cette situation est impossible sur un segment (intervalle fermé borné) :

Théorème 13.1.12 (Heine)

Soit I = [a, b] un segment, et f une fonction continue sur I. Alors f est uniformément continue sur I.

Par l'absurde, construire (x_n) et (y_n) telles que $x_n - y_n \to 0$ et $|f(x_n) - f(y_n)| > \varepsilon$. Extraire une suite convergente de (x_n) et contredire le critère séquentiel.

I.4 Extrema des fonctions continues sur un intervalle fermé borné

On rappelle qu'un sous-ensemble K de $\mathbb R$ est dit compact s'il vérifie la propriété de Bolzano-Weierstrass :

Définition 13.1.13 (Compacité)

Soit $K \subset \mathbb{R}$. On dit que K est compact si de toute suite (x_n) d'éléments de K, on peut extraire une suite convergeant vers un élément a de K.

Exemple 13.1.14

Par exemple, les intervalles fermé bornés [a,b] (aussi appelés segments) sont des compacts dans \mathbb{R} . C'est la compacité de ces intervalles qui sera en jeu dans le théorème des bornes atteintes (aussi appelé théorème de compacité).

Théorème 13.1.15 (Théorème de compacité, ou théorème de la borne atteinte)

Soit I = [a,b] un segment (c'est-à-dire un intervalle fermé borné), et soit $f: I \to \mathbb{R}$ une fonction continue sur I. Alors f est bornée, et atteint ses bornes.

Considérer une suite (x_n) telle que $f(x_n)$ converge vers la borne supérieure, et en extraire une suite convergente.

En d'autres termes, toute fonction continue sur un segment admet un maximum et un minimum.

I.5 Autour des fonctions monotones – Théorème de la bijection

Théorème 13.1.16

Soit I un intervalle, et $f: I \to \mathbb{R}$ une fonction continue. Alors f est injective si et seulement si f est strictement monotone.

Réciproque déjà établie. Pour le sens direct, raisonner par contraposée. Si f n'est pas monotone, il existe a < b < c tel que f(a) < f(b) et f(b) > f(c), ou l'inverse. Appliquer le TVI sur chacun des deux intervalles [a,b] et [b,c] pour contredire l'injectivité.

Théorème 13.1.17

Soit I un intervalle, et $f: I \to \mathbb{R}$ monotone. Si f(I) est un intervalle, alors f est continue

d Éléments de preuve.

Sinon, en supposant f croissante, on peut trouver a tel que l'une des 2 inégalités suivantes soit définie et vérifiée :

$$\lim_{x \to a^{-}} f(x) < f(a), \qquad f(a) < \lim_{x \to a^{+}} f(x).$$

Alors, par croissance, les valeurs intérmédiaires à ces inégalités ne sont pas atteintes. Cela contredit la convexité.

Ce théorème constitue une réciproque du théorème des valeurs intermédiaires dans le cas où f est monotone.

Avertissement 13.1.18

Le résultat peut être mis en défaut si f n'est pas monotone, par exemple en considérant

$$x \mapsto f(x) = x \mathbb{1}_{\mathbb{R} \setminus \mathbb{Q}}(x) + (1 - x) \mathbb{1}_{\mathbb{Q}}(x).$$

Définition 13.1.19 (Homéomorphisme)

Soit $A, B \subset \mathbb{R}$. Un homéomorphisme $f: A \to B$ est une application continue bijective dont la réciproque est continue.

Théorème 13.1.20 (Théorème de la bijection)

Soit I un intervalle d'extrémités a et b. Soit $f: I \to \mathbb{R}$ strictement monotone et continue. Soit :

$$\alpha = \lim_{x \to a} f(x)$$
 et $\beta = \lim_{x \to b} f(x)$

(ces limites existent car f est monotone). Alors f(I) est un intervalle d'extrémités α et β , et f est un homéomorphisme de I sur f(I).

Plus précisément, la borne α de f(I) est ouverte si et seulement la borne a de I est ouverte, et de même pour β .

- d Éléments de preuve.
 - f(I) est un intervalle par TVI. Si I contient une borne, l'image de cette borne est une borne de f(I). La stricte monotonie empêche que la borne de f(I) soit atteinte ailleurs.
 - Soit J = f(I). Alors f^{-1} est monotone sur l'intervalle J, et son image est l'intervalle I. Conclure avec le théorème précédent.

On affirme en particulier que si f et une fonction continue strictement monotone, elle induit une bijection sur son image, et sa réciproque est également continue.

Remarque 13.1.21

On dispose maintenant des outils adéquats pour compléter la démontration du théorème de dérivation des réciproques. En effet, il nous restait à montrer que si f est continue sur un intervalle I et bijective, sa réciproque est continue aussi. Ceci est une conséquence du théorème de la bijection auquel on se ramène grâce au théorème 13.1.17.

II Fonctions dérivables sur un intervalle

Nous avons déjà étudié la dérivabilité en un point, ainsi que toutes les propriétés calculatoires. Nous nous contentons donc ici de l'étude des propriétés des fonctions dérivables sur tout un intervalle.

 \triangleright

La dérivabilité d'une fonction est une hypothèse de régularité assez forte (la fonction ne peut pas être localement « hérissée »). La dérivabilité d'une fonction sur tout un intervalle a de ce fait des implications assez fortes.

II.1 Théorème de Rolle

Graphiquement, le théorème suivant est une évidence :

Théorème 13.2.1 (Rolle)

Soit $f:[a,b] \to \mathbb{R}$ continue sur [a,b] et dérivable sur [a,b]. Alors, si f(a)=f(b), il existe $c \in]a,b[$ tel que f'(c)=0.

Par compacité, f admet un maximum et un minimum. Sauf si f est constante, l'un des deux est différent de f(a) et f(b), donc atteint en $c \in]a,b[$.

On peut étendre le théorème de Rolle de plusieurs façons. Les résultats suivants sont des exercices classiques (à savoir démontrer à la demande, il ne s'agit pas de résultats du cours) :

Corollaire 13.2.2 (Rolle sur un intervalle infini d'un côté, HP)

Soit $f:[a,+\infty[\to\mathbb{R} \text{ continue, dérivable sur }]a,+\infty[,\text{ et telle que }f(a)=\lim_{x\to+\infty}f(x).\text{ Alors il existe }c\in]a,+\infty[\text{ tel que }f'(c)=0.$

Si f non constante considérer d tel que $f(d) \neq f(a)$, puis à l'aide du TVI trouver b distinct de a tels que f(a) = f(b).

Corollaire 13.2.3 (Rolle sur \mathbb{R} , HP)

Soit $f: \mathbb{R} \to \mathbb{R}$ dérivable sur \mathbb{R} , et telle que $\lim_{x \to -\infty} f(x) = \lim_{x \to +\infty} f(x)$. Alors il existe $c \in \mathbb{R}$ tel que f'(c) = 0.

Même principe en coupant les infinis des deux côtés.

Corollaire 13.2.4 (Rolle itéré, HP)

Soit $n \in \mathbb{N}^*$. Soit $f : [a,b] \to \mathbb{R}$, continue sur [a,b], n fois dérivable sur [a,b], a,b[, et telle qu'il existe n+1 réels $a \le a_0 < a_1 < \cdots < a_n \le b$ tels que $f(a_0) = f(a_1) = \cdots = f(a_n)$. Alors il existe $c \in]a,b[$ tel que $f^{(n)}(c) = 0$.

Récurrence immédiate.

Note Historique 13.2.5

• Michel Rolle (1659-1719) démontre une version purement algébrique de ce théorème dans le cadre des polynômes. Il ne possède même pas à ce moment-là de la notion de dérivée : il recherche des encadrements de racines d'un polynôme en constatant qu'elles sont séparées par les racines non nulles du polynôme obtenu en multipliant chaque monôme par son degré. Cette construction purement algébrique n'est rien d'autre, après simplification par X, que la dérivée du polynôme...

- Lagrange, puis Cauchy, démontrent le théorème de Rolle dans une version plus générale, en établissant d'abord l'inégalité des accroissements finis, puis en utilisant le TVI sur f': ils utilisent donc une hypothèse supplémentaire, la continuité de f'.
- C'est Pierre-Ossian Bonnet (1819-1892) qui propose le point de vue actuel, permettant de se dispenser de l'hypothèse de continuité de f', et simplifiant considérablement la preuve du théorème des accroissements finis, le voyant comme une conséquence du théorème de Rolle plutôt que l'inverse.

II.2 Théorème des accroissements finis

Une conséquence importante du théorème de Rolle est :

Théorème 13.2.6 (Théorème des accroissements finis, TAF)

Soit $f:[a,b]\to\mathbb{R}$ continue sur [a,b], dérivable sur [a,b]. Alors il existe $c\in [a,b]$ tel que :

$$f(b) - f(a) = (b - a)f'(c).$$

Considérer
$$g(x) = f(x) - (x-a)\frac{f(b)-f(a)}{b-a}$$
.

Remarque 13.2.7 (Interprétation géométrique)

Il existe une tangente parallèle à la corde.

Remarquez que le TAF est une généralisation du théorème de Rolle. On a même une équivalence entre les deux propriétés, le TAF étant simplement obtenu du théorème de Rolle par ajout d'une partie affine. Ceci permet de boucler la boucle. On a en effet déjà vu les conséquences importantes du théorème des accroissements finis, que nous rappelons rapidement :

- Inégalité des accroissements finis;
- Caractère lipschitzien des fonctions à variation bornée;
- Théorèmes de prolongement (limite de la dérivée, classe C^n)
- Caractérisation de la croissance par le signe de la dérivée;
- Caractérisation des fonctions convexes par les variations de f'.

II.3 Extension aux fonctions dérivables à valeurs dans \mathbb{C}

On a déjà vu comment étendre les notions liées à la dérivation aux fonctions d'une variable réelle et à valeurs dans \mathbb{C} . Il est important de se souvenir que la dérivabilité d'une telle fonction est caractérisée par la dérivabilité de sa partie réelle et de sa partie imaginaire.

Certains résultats relatifs aux fonctions dérivables sur un intervalle se généralisent également au cas de fonctions à valeurs dans \mathbb{C} , mais pas tous cependant. Ainsi, par exemple les résultats liés à l'étude d'extrema ou de variations n'ont pas de sens dans ce cadre, car ils nécessiteraient la donnée d'une relation d'ordre sur \mathbb{C} . En particulier :

• Le théorème de Rolle, dont la démonstration repose sur l'existence d'un extremum, n'a pas d'équivalent pour une fonction à valeurs dans \mathbb{C} . On pourra en revanche, sous les conditions idoines, l'appliquer à la partie réelle f_1 et à la partie imaginaire f_2 , trouvant ainsi deux réels c_1 et c_2 tels que $f'_1(c_1) = 0$ et $f'_2(c_2) = 0$, mais comme c_1 et c_2 n'ont aucune raison d'être égaux, on ne pourra pas en conclure l'existence d'un réel c tel que f'(c) = 0. Pensez à une fonction décrivant, à vitesse constante, un cercle dans \mathbb{C} ; la dérivée sera un vecteur de norme constante, tangent au cercle, donc ne s'annulant pas. Pourtant, si entre a et b, on fait un tour complet, on aura f(a) = f(b).

• Le théorème des accroissements finis, dont la démonstration repose sur le théorème de Rolle, entre également en défaut. D'ailleurs, le théorème de Rolle n'est qu'un cas particulier du théorème des accroissements finis. Là encore, sous les conditions idoines, on pourra trouver des réels c_1 et c_2 tels que $(f_1(b) - f_1(a)) = f'_1(c_1)(b-a)$ (pour la partie réelle) et $(f_2(b) - f_2(a)) = f'_2(c_1)(b-a)$ (pour la partie imaginaire), mais c_1 et c_2 étant en général distincts, on ne pourra, sauf cas exceptionnels, pas trouver de réel c_1 tel que c_2 tel que c_3 tel que c_4 tel qu

De façon remarquable cependant, l'inégalité des accroissements finis reste vraie :

Théorème 13.2.8 (IAF pour des fonctions à valeurs dans \mathbb{C})

Soit $f:[a,b]\to\mathbb{C}$ continue sur [a,b] et dérivable sur]a,b[, et M un réel tel que $|f'|\leqslant M$ sur]a,b[. Alors

$$|f(b) - f(a)| \le M|b - a|.$$

Le résultat n'est au programme que sous l'hypothèse f de classe C^1 sur [a,b].

Nous nous contentons d'une démonstration sous l'hypothèse au programme : f de classe C^1 sur [a, b]. Écrire dans ce cas f comme intégrale de sa dérivée.

La démonstration générale est un peu plus délicate, et hors-programme.

Remarque 13.2.9

En particulier, les théorèmes de prolongement, basés sur l'IAF, restent vrais.

Calcul asymptotique

Dans ce chapitre, on introduit certains outils permettant de mieux comprendre le comportement des suites ou fonctions au voisinage de l'infini (pour les suites), ou d'un point quelconque de $\overline{\mathbb{R}}$ (pour les fonctions). Ces outils permettent d'affiner la notion de limite, notamment dans le cas d'une limite nulle ou infinie : ils nous permettront d'exprimer le fait qu'une suite converge plus rapidement vers 0 qu'une autre, ou sensiblement à la même vitesse.

I Domination, négligeabilité

I.1 Cas des suites

Définition 14.1.1 (Domination, cas des suites)

Soit $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ deux suites réelles. On dit que (u_n) est dominée par (v_n) si et seulement s'il existe un réel M tel que à partir d'un certain rang n_0 , $|u_n| \leq M|v_n|$, soit, formellement :

$$\exists M \in \mathbb{R}, \ \exists n_0 \in \mathbb{N}, \ \forall n \geqslant n_0, \ |u_n| \leqslant M|v_n|.$$

De manière équivalente, (u_n) est dominée par (v_n) si et seulement s'il existe une suite (μ_n) telle que pour tout n assez grand, $u_n = \mu_n v_n$, et (μ_n) est bornée.

Ainsi, (u_n) est dominée par (v_n) si et seulement si l'ordre de grandeur de (u_n) ne dépasse pas celui de (v_n) , à une constante multiplicative près.

Définition 14.1.2 (Négligeabilité, cas des suites)

Soit $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ deux suites réelles. On dit que (u_n) est négligeable devant (v_n) si pour tout $\varepsilon > 0$, il existe $n_0 \in \mathbb{N}$ tel que pour tout $n \ge n_0$,

$$|u_n| \leqslant \varepsilon |v_n|.$$

De manière équivalente, (u_n) est négligeable devant (v_n) si et seulement s'il existe une suite $(\varepsilon_n)_{n\in\mathbb{N}}$ et un entier n_0 tels que :

$$\forall n \geqslant n_0, \quad u_n = \varepsilon_n v_n \quad \text{et} \quad \lim \varepsilon_n = 0.$$

Il est souvent plus pratique d'utiliser, lorsque c'est possible, les caractérisations suivantes de la domination et de la négligeabilité.

Proposition 14.1.3

 $Si(v_n)$ ne s'annule pas (à partir d'un certain rang au moins), alors :

- 1. (u_n) est dominée par (v_n) si et seulement si $\left(\frac{u_n}{v_n}\right)$ est bornée;
- 2. (u_n) est négligeable devant (v_n) si et seulement si $\lim \frac{u_n}{v_n} = 0$

Enfin, pour pouvoir gérer facilement des relations de domination ou de négligeabilité, ou pour pouvoir écrire des approximations de façon commode, on utilise les notations suivantes :

Notation 14.1.4 (Notations de Bachmann et de Landau)

- 1. Si (u_n) est dominée par (v_n) , on note $u_n = O(v_n)$
- 2. Si (u_n) est négligeable devant (v_n) , on note $u_n = o(v_n)$

L'intérêt de cette notation est qu'on peut l'utiliser dans les calculs. On peut par exemple considérer $u_n = v_n + o(w_n)$. C'est notamment pratique pour formaliser des approximations. Ainsi, dire que

$$u_n = 2 + \frac{3}{n} - \frac{5}{n^2} + o\left(\frac{1}{n^2}\right),$$

signifie que pour n assez grand, u_n est à peut près égal à $2 + \frac{3}{n} - \frac{5}{n^2}$, et que l'erreur faire en approchant u_n par cette expression est négligeable devant le plus petit terme de cette expression polynomiale. Il s'agit d'une bonne approximation par une expression polynomiale en $\frac{1}{n}$ à l'ordre 2. Il s'agit même de la meilleure.

Avertissement 14.1.5

Attention à l'abus de notation que l'on fait en écrivant cette égalité. Il ne s'agit pas vraiment d'une égalité, et c'est à prendre plus dans le sens d'une appartenance $((u_n)$ appartient à l'ensemble des suites dominées par (v_n)). Si on garde en tête l'idée qu'il s'agit d'une appartenance, on évite un certain nombre d'erreurs que peut véhiculer la notation. Par exemple :

- $u_n = o(v_n)$ et $u'_n = o(v_n)$ n'implique pas $u_n = u'_n$, ce qui est assez troublant formellement pour une égalité.
- On ne peut pas simplifier des $o: u_n + o(w_n) = v_n + o(w_n)$ n'implique pas $u_n = v_n$.
- L'égalité n'est dans ce contexte pas symétrique, il y a un sens de lecture :

$$u_n + o(v_n) = u_n + o(w_n) \not\Longrightarrow u_n + o(w_n) = u_n + o(v_n).$$

On effet, l'égalité suggère une détérioration (au sens large) de la qualité de l'approximation. Ainsi, on pourra écrire

$$u_n + o\left(\frac{1}{n^2}\right) = u_n + o\left(\frac{1}{n}\right),$$

 \triangleright

mais l'inverse est faux en général.

Proposition 14.1.6

$$Si \ u_n = o(v_n), \ alors \ u_n = O(v_n).$$

Une suite tendant vers 0 est bornée.

Note Historique 14.1.7

- La notation O pour la dominance a été introduite par le mathématicien allemand Paul Bachmann dans son livre Die analytische Zahlentheorie (1894)
- Le mathématicien allemand Edmond Landau, spécialiste de la théorie des nombres, introduit la notation o dans son Handbuch der Lehrer von der Verteilung der Primzahlen (1909)
- Le mathématicien et informaticien Donald Knuth (spécialiste de l'informatique théorique, et créateur du célèbre logiciel TeX, référence encore aujourd'hui pour la composition de documents mathématiques professionnels, notamment sous sa forme dérivée LaTeX) introduit la notation $\Omega(u_n)$ dans un article de 1976 (Big Omicron and Big Omega and Big Theta):

$$v_n = \Omega(u_n)$$
 \iff $\exists C > 0, \ \exists n_0 \in \mathbb{N}, \forall n \geqslant n_0, \ v_n \geqslant Cu_n.$

Il définit également la notation $\Theta(u_n)$:

$$v_n = \Theta(u_n)$$
 \iff $\exists C, C' > 0, \ \exists n_0 \in \mathbb{N}, \forall n \geqslant n_0, \ C'u_n \leqslant v_n \leqslant Cu_n.$

Ces notations sont plus adaptées que o et O pour l'étude de la complexité des algorithmes : une minoration de la complexité permet de mieux cerner les limitations d'un algorithme!

Exemple 14.1.8 (Reexpression des croissances comparées)

- 1. $\ln n = o(n^{\alpha}) \ (\alpha > 0)$
- 2. $n^{\alpha} = o(e^n) \ (\alpha \in \mathbb{R}).$
- 3. $n! = o(n^n)$.
- 4. $a^n = o(n!) \ (a \in \mathbb{R})$
- 5. $n^a = o(n^b)$ si a < b

Ainsi, pour $\alpha > 0$, $\boxed{\ln(n) \ll n^{\alpha} \ll e^{n} \ll n! \ll n^{n}}$

Proposition 14.1.9

Soit (u_n) une suite réelle.

- 1. $u_n = O(1)$ si et seulement si $(u_n)_{n \in \mathbb{N}}$ est bornée.
- 2. $u_n = o(1)$ si et seulement si $(u_n)_{n \in \mathbb{N}}$ tend vers 0.
- 3. $\lim u_n = \ell$ si et seulement si $u_n = \ell + o(1)$.

C'est juste la réexpression de trois cas particuliers de la définition.

I.2 Propriétés des o et O

À part qu'elle n'est pas anti-symétrique, la relation de domination (resp. de négligeabilité) se comporte à peu près comme une relation d'ordre large (resp. stricte), ce qu'expriment les propriétés suivantes. Dans ces énoncés, (u_n) , (v_n) , (w_n) et (x_n) désignent des suites réelles.

Propriétés 14.1.10 (Transitivités strictes et larges de o et O)

- 1. Si $u_n = O(v_n)$ et $v_n = O(w_n)$, alors $u_n = O(w_n)$.
- 2. Si $u_n = o(v_n)$ et $v_n = o(w_n)$, alors $u_n = o(w_n)$.
- 3. Si $u_n = o(v_n)$ et $v_n = O(w_n)$, alors $u_n = o(w_n)$.
- 4. Si $u_n = O(v_n)$ et $v_n = o(w_n)$, alors $u_n = o(w_n)$.

Introduire des suites (μ_n) et (ε_n) traduisant les propriétés de domination et de négligeabilité. On est ramené à des propriétés sur les produits de limites : 0×0 , $0 \times$ borné, borné $\times 0$, ainsi que borné \times borné = borné.

Propriétés 14.1.11 (sommes de o et O)

- 1. Si $u_n = o(w_n)$ et $v_n = o(w_n)$, alors $u_n + v_n = o(w_n)$.
- 2. Si $u_n = O(w_n)$ et $v_n = O(w_n)$, alors $u_n + v_n = O(w_n)$.
- 3. Si $u_n = o(w_n)$ et $v_n = O(w_n)$, alors $u_n + v_n = O(w_n)$.
- 4. Si $u_n = O(w_n)$ et $v_n = o(w_n)$, alors $u_n + v_n = O(w_n)$.

Même principe. Cette fois-ci, on a des sommes au lieu de produits.

Propriétés 14.1.12 (produits de o et O)

- 1. Si $u_n = o(w_n)$ et $v_n = o(x_n)$, alors $u_n v_n = o(w_n x_n)$.
- 2. Si $u_n = O(w_n)$ et $v_n = o(x_n)$, alors $u_n v_n = o(w_n x_n)$.
- 3. Si $u_n = o(w_n)$ et $v_n = O(x_n)$, alors $u_n v_n = o(w_n x_n)$.
- 4. Si $u_n = O(w_n)$ et $v_n = O(x_n)$, alors $u_n v_n = O(w_n x_n)$.
- 5. En particulier, $u_n = w_n o(x_n) \iff u_n = o(w_n x_n)$ et $u_n = w_n O(x_n) \iff u_n = O(w_n x_n)$. (Les o et O sont multiplicatifs: on peut rentrer ou sortir un facteur multiplicatif).

Même principe.

Remarque 14.1.13 (Intérêt des o et O)

On se sert souvent des o et O pour estimer (ou borner) la vitesse de convergence d'une suite vers sa limite, en étudiant $u_n-\ell$. On compare ainsi souvent la différence $u_n-\ell$ à une suite de référence de limite nulle, ou u_n à une suite de référence de limite $+\infty$. Par exemple, une suite telle que $|u_n-\ell|=o(\mathrm{e}^{-n})$ aura une convergence rapide (exponentielle), alors que l'information $|u_n-\ell|=o\left(\frac{1}{\ln n}\right)$ ne permet pas de contrôler aussi bien la convergence (mais une telle égalité n'empêche pas que la convergence puisse être rapide).

Les propriétés des o et O ressemblent beaucoup à des propriétés de relations d'ordre. Plus précisément :

Proposition 14.1.14 (o se comporte comme une inégalité stricte)

La relation o est une relation d'ordre stricte sur l'ensemble des suites non ultimement nulles (i.e. nulles à partir d'un certain rang).

Vérifier l'irréflexivité (immédiat) et l'asymétrie (par l'absurde).

Proposition 14.1.15 (Pourquoi O se comporte presque comme une inégalité large, HP)

La relation Θ est une relation d'équivalence sur $\mathbb{R}^{\mathbb{N}}$. La relation O passe au quotient et définit une relation d'ordre large sur $\mathbb{R}^{\mathbb{N}}/\Theta$.

L'affirmation sur Θ est immédiate, la possibilité de passer au quotient se montre en justifiant que l'affirmation $u_n = O(v_n)$ est indépendante de la classe d'équivalence de (u_n) et de (v_n) . Le passage au quotient de O permet de récupérer l'antisymétrie qui manquait.

I.3 Extension au cas des fonctions

Définition 14.1.16 (Domination, cas des fonctions)

Soit f et g deux fonctions définies sur X et $a \in \overline{X}$. On dit que f est dominée par g au voisinage de a si et seulement s'il existe un voisinage V de a et une fonction h définie sur $V \cap X$, et bornée, telle que f = hg sur $V \cap X$.

On note
$$f(x) = O(g(x))$$
, ou $f(x) = O(g(x))$ ou encore $f = O(g)$.

Ainsi, f est dominée par g si et seulement si l'ordre de grandeur de f ne dépasse pas celui de g, à une constante multiplicative près, au voisinage de a.

Si g ne s'annule pas au voisinage de a, il revient au même de dire que $\frac{f}{g}$ est bornée au voisinage de a.

Définition 14.1.17 (Négligeabilité, cas des fonctions)

Soit f et g deux fonctions définies sur X, et $a \in \overline{X}$. On dit que f est négligeable devant g s'il existe un voisinage V de a, et une fonction h définie sur $V \cap X$, tels que

$$\forall x \in V \cap X, \quad f(x) = h(x)g(x)$$
 et $\lim_{x \to a} h(x) = 0.$

On note f(x) = o(g(x)), ou f(x) = o(g(x)) ou encore f = o(g).

Si g ne s'annule pas au voisinage de a, il revient au même de dire que $\frac{f}{g}$ admet une limite nulle en a.

Théorème 14.1.18 (Caractérisation par ε)

Sous les hypothèses précédentes :

- 1. f = O(g) si et seulement s'il existe un réel M et un voisinage V de a tel que pour tout $x \in V \cap X$, $|f(x)| \leq M|g(x)|$.
- 2. $f = \underset{a}{o}(g)$ si et seulement si pour tout $\varepsilon > 0$, il existe un voisinage V de a tel que pour tout $x \in V \cap X$, $|f(x)| \leq \varepsilon |g(x)|$.

√ Éléments de preuve.

Les deux équivalences se démontrent de même. Le sens direct est assez facile, en exprimant le fait que h est borné, ou sa limite nulle par ε . Pour le sens réciproque, commencer par montrer qu'il existe un voisinage V_0 tel que pour tout $x \in V_0 \cap X$, $g(x) = 0 \Longrightarrow f(x) = 0$. Définir alors h par $\frac{f}{g}$ lorsque g ne s'annule pas et 0 sinon, et vérifier que h vérifie les propriétés requises (par ε pour la limite). \triangleright

Ainsi, f est dominée par g si et seulement si l'ordre de grandeur de f ne dépasse pas celui de g, à une constante multiplicative près, au voisinage de a; f est négligeable devant g si au voisinage de a, |f| peut être rendu aussi petit qu'on veut devant |g|.

Théorème 14.1.19 (Caractérisation séquentielle)

Soit f et g deux fonctions définies sur X, et $a \in \overline{X}$. Alors :

- 1. f = O(g) si et seulement si pour toute suite $u_n \to a$ à valeurs dans X, $f(u_n) = O(g(u_n))$.
- 2. f = o(g) si et seulement si pour toute suite $u_n \to a$ à valeurs dans X, $f(u_n) = o(g(u_n))$.

- 1. Sens direct : introduire h bornée au voisinage de a. Alors $(h(u_n))$ bornée. Sens réciproque : par contraposée, à partir de la caractérisation par M; construire une suite $x_n \to a$ (coller le voisinage V à a) telle que pour tout n, $f(x_n) > ng(x_n)$.
- 2. Sens direct : introduire h définie au voisinage de a et de limite nulle, puis appliquer x_n . Sens réciproque : par contraposée, à partir de la caractérisation par ε . Construire $x_n \to a$ tel que $f(x_n) > \varepsilon g(x_n)$ pour un certain $\varepsilon > 0$.

 \triangleright

Comme dans le cas des limites, cette caractérisation séquentielle permet de transférer toutes les propriétés des o et O pour les suites au cas des fonctions. Ces propriétés peuvent aussi se montrer directement sur le même principe que dans le cas des suites. Pour les propriétés relatives aux relations d'ordres définies par o et O, il faut remplacer l'hypothèse « non ultimement nul » par « non identiquement nulle sur un voisinage de a ».

II Équivalents

II.1 Cas des suites

Définition 14.2.1 (Équivalence)

Deux suites réelles (u_n) et (v_n) sont dites équivalentes s'il existe une suite (α_n) et un entier n_0 tels que

$$\forall n \geqslant n_0, \ u_n = \alpha_n v_n$$
 et $\lim \alpha_n = 1$.

Notation 14.2.2

Si (u_n) et (v_n) sont équivalentes, on note $u_n \underset{+\infty}{\sim} v_n$, ou simplement $u_n \sim v_n$.

De la définition découle le résultat important suivant :

Proposition 14.2.3 (Caractérisation de l'équivalence par la négligeabilité)

 $u_n \underset{+\infty}{\sim} v_n \iff u_n = v_n + o(v_n).$

Dans le sens direct, il suffit d'écrire $u_n - v_n$ en fonction de v_n et de la suite α_n de la définition de l'équivalence. Pour la réciproque, démarche inverse.

Cette propriété implique notamment qu'une somme de terme est équivalente à son terme prépondérant (celui devant lequel tous les autres sont négligeables). La recherche de l'équivalent d'une somme passe de fait souvent par l'étude des négligeabilités des termes les uns par rapport aux autres. On en déduit par exemple :

II ÉQUIVALENTS 115

Proposition 14.2.4 (équivalent d'un polynôme)

Soit P un polynôme de monôme dominant a_dX^d . Alors $P(n) \sim a_dn^d$.

√ Éléments de preuve.

Soit faire le quotient par le monôme dominant, soit utiliser la propriété précédente, en remarquant que pour tout k < d, $n^k = o(n^d)$ (donc une CL de termes de ce type aussi).

Par exemple, $2n^2 + n - 1 \sim 2n^2$.

Comme pour la négligeabilité et la dominance, on a une version commode lorsque (v_n) ne s'annule pas

Proposition 14.2.5

Soit (u_n) et (v_n) deux suites telles que (v_n) ne s'annule pas (au moins à partir d'un certain rang). Alors

$$u_n \underset{+\infty}{\sim} v_n \iff \lim \frac{u_n}{v_n} = 1.$$

Remarque 14.2.6

Dans les trois notations $u_n = O(v_n)$, $u_n = o(v_n)$ et $u_n \sim v_n$, les égalités s'appliquent bien aux termes u_n et v_n , et non aux suites. Cependant on ne quantifie pas les expressions dans lesquelles interviennent des o, O ou des équivalents : il s'agit d'une égalité au voisinage de $+\infty$, comme les limites.

Proposition 14.2.7

La relation \sim est une relation d'équivalence sur l'ensemble des suites réelles.

Vérifications immédiates à partir de la définition.

II.2 Propriétés des équivalents

Théorème 14.2.8 (Conservation des limites par équivalence)

Si $u_n \underset{+\infty}{\sim} v_n$, et si $(u_n)_{n \in \mathbb{N}}$ converge vers ℓ dans $\overline{\mathbb{R}}$, alors $(v_n)_{n \in \mathbb{N}}$ converge, et sa limite est ℓ .

Propriété de produit de limites à partir de la définition.

Avertissement 14.2.9

La réciproque est fausse en général. Elle est vraie en cas de limite non nulle et non infinie, mais en revanche, deux suites de même limite nulle ou infinie ne sont pas nécessairement équivalentes

Exemples 14.2.10

- 1. (n) et (n^2) ne sont pas équivalentes
- 2. (e^{-n}) et (e^{-2n}) ne sont pas équivalentes.

Ainsi, la notion d'équivalent n'a vraiment d'intérêt que pour des suites de limite nulle ou infinie. Dans ce cas, la recherche d'un équivalent permet d'estimer la vitesse de convergence. On recherche pour cela un équivalent sous une forme simple et bien connue, par exemple n^a , ou $n^a \ln^b n$ etc. On peut ainsi comparer la vitesse de convergence de deux suites.

Proposition 14.2.11 (Conservation du signe)

Soit (u_n) et (v_n) deux suites équivalentes. Alors il existe n_0 tels que pour tout $n \ge n_0$, u_n et v_n soient de même signe.

Si $\alpha_n \to 1$, alors α_n est positive à partir d'un certain rang.

Avertissement 14.2.12

Attention, cela ne signifie pas qu'à partir du rang n, (u_n) et (v_n) sont de signe constant! Le signe peut varier, mais de la même manière pour les deux suites.

On peut faire un peu mieux, et obtenir une conservation stricte : il existe n_0 tel que pour tout $n \ge n_0$, u_n et v_n sont soit tous les deux nuls, soit strictement de même signe.

Comme les o et O, les équivalents se comportent bien vis-à-vis des produits et des quotients :

Proposition 14.2.13 (Équivalents de produits, quotients, puissances)

Soit (u_n) , (v_n) , (u'_n) et (v'_n) quatre suites réelles.

- 1. Si $u_n \sim u_n'$ et $v_n \sim v_n'$, alors $u_n v_n \sim u_n' v_n'$.
 - 2. Si de plus v_n est non nulle à partir d'un certain rang, alors $\frac{u_n}{v_n} \sim \frac{u'_n}{v'_n}$.
 - 3. Si $u_n \sim u'_n$ et si a est un réel fixé, alors $(u_n)^a \sim (u'_n)^a$.

Immédiat par définition (en introduisant des suites α_n). Remarquez que ces suites ne s'annulent pas à partir d'un certain rang.

En revanche, le passage à une puissance dépendant de n requiert de la prudence (revenir à la notation exponentielle).

Lors de l'étude des fonctions usuelles, nous avons rencontré un certain nombre de limites remarquables, qui en fait s'expriment sous forme d'un équivalent, et sont généralement plus commodes à utiliser sous cette forme.

Proposition 14.2.14 (Équivalences et négligeabilité)

Les relations o et O sont indépendantes des classes d'équivalence pour la relation \sim . Ainsi, si $u_n \sim u_n'$ et $v_n \sim v_n'$, alors $u_n = o(v_n)$ si et seulement si $u_n' = o(v_n')$ (et de même pour O).

Immédiat à partir des définitions en introduisant des suites adéquates. Ou bien en remarquant que $u_n \sim v_n$ implique $u_n = \Theta(v_n)$, pour se raccorcher à un résultat déjà vu.

II.3 Cas des fonctions

II ÉQUIVALENTS 117

Définition 14.2.15 (Équivalence entre fonctions)

Deux fonctions f et g définies sur X sont dites équivalentes au point $a \in \overline{X}$ s'il existe un voisinage V de a et une fonction h définie sur $V \cap X$ tel que

$$\forall x \in V \cap X, \ f(x) = h(x)g(x)$$
 et $\lim_{x \to a} h(x) = 1.$

On note $f(x) \underset{x \to a}{\sim} g(x)$.

Si g ne s'annule pas au voisinage de a, il revient au même de dire que $\frac{f}{g}$ tend vers 1 en a. Il revient également au même de dire que f = g + o(g).

Encore une fois, toutes les propriétés vues pour les équivalents de suites restent valables pour les équivalents de fonctions, par démonstration directe sur le même principe que pour les suites, ou grâce au théorème suivant :

Théorème 14.2.16 (Caractérisation séquentielle de l'équivalence)

Soit f et g deux fonctions définies sur X et $a \in \overline{X}$. Alors $f(x) \underset{x \to a}{\sim} g(x)$ si et seulement si pour toute suite (x_n) d'éléments de X telle que $x_n \to a$, $f(x_n) \sim g(x_n)$.

√ Éléments de preuve.

Conséquence de la caractérisation séquentielle de o, appliquée à f - g = o(g).

Une autre propriété importante est la propriété de conservation du signe, comme dans le cas des suites :

Proposition 14.2.17 (Conservaiton du signe, pour les fonctions)

Soit f et g définies sur X, et $a \in \overline{X}$. On suppose que $f \sim g$. Alors, il existe un voisinage V de a tel que f et g ont même signe (point par point) sur $V \cap X$, i.e. pour tout $x \in V \cap X$, f(x) a même signe que g(x).

C'est le fait que la fonction h de la définition est strictement positive sur un voisinage de a.

En général, on utilise ce résultat lorsque l'une des deux fonctions a un signe constant au voisinage de a. On en déduit que l'autre aussi. En revanche, on prendra garde au fait que ceci ne permet de contrôler le signe que localement, au voisinage de a, et par sur le domaine X tout entier.

II.4 Équivalents classiques

Proposition 14.2.18 (Équivalents classiques, à connaître sur le bout des doigts)

1.
$$\ln(1+x) \sim x$$
;

6.
$$\operatorname{sh}(x) \sim x$$
;

2.
$$e^x - 1 \sim x$$
;

7.
$$\operatorname{ch}(x) - 1 \sim \frac{x^2}{2}$$
;

3.
$$(1+x)^a - 1 \underset{0}{\sim} ax \quad (a \neq 0);$$

8.
$$th(x) \sim x$$
;

4.
$$\sin(x) \sim x$$
;

9. Arcsin
$$(x) \sim x$$
;

5.
$$\cos(x) - 1 \sim -\frac{x^2}{2}$$
;

10. Arctan
$$(x) \sim x$$
;

6.
$$\tan(x) \sim x$$
;

Ce sont des réexpressions des limites remarquables. Pour rappel, la plupart de ces limites sont obtenues par taux d'accroissement.

Théorème 14.2.19 (Formule de Stirling, admis)

On
$$a:n! \underset{+\infty}{\sim} \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$$
.

Traditionnel DM. La démonstration est hors-programme, mais pas la formule.

II.5 Problème de la somme et de la composition des équivalents

Nous n'avons pas vu de règle pour sommer des équivalents. C'est normal. C'est interdit.

Avertissement 14.2.20 (Sommes d'équivalents)

Ne pas sommer des équivalents.

Si les parties principales se compensent, on s'expose à des erreurs.

Exemple 14.2.21

 $u_n=\frac{1}{n}\sim\frac{1}{n}+\frac{1}{n^2},\,v_n=-\frac{1}{n}+\frac{1}{n^3}\sim-\frac{1}{n}+\frac{1}{n^3}$; Faites la somme des deux.

Méthode 14.2.22 (Pour contourner le problème des sommes d'équivalents)

- Étudier les négligeabilités entre les termes de la somme, pour ne garder que les termes d'ordre prépondérant.
- Écrire les équivalents avec un o et effectuer la somme sous cette forme.
- Si les parties principales ne se compensent pas, on peut revenir à un équivalent.
- Sinon, on ne peut pas conclure directement. Il faut étudier l'ordre de grandeur de ce qu'il reste après simplification des parties principales, et pour cela, il faut avoir une meilleure approximation de chaque terme (la connaissance de l'équivalent ne suffit pas). On peut par exemple utiliser un développement limité (voir chapitre correspondant).

Exemple 14.2.23

Déterminer un équivalent de $\sin\left(\frac{2}{n}\right) - \sin\left(\frac{1}{n}\right)$.

Avertissement 14.2.24 (Composition d'équivalents)

Ne composez pas un équivalent par une fonction.

En général, $u_n \sim v_n$ n'implique pas $f(u_n) \sim f(v_n)$. Même avec des fonctions « gentilles » comme le logarithme ou l'exponentielle, ça peut être faux.

Exemples 14.2.25

- 1. Est-ce que $e^n \sim e^{n+1}$?
- 2. Est-ce que $\ln\left(1+\frac{1}{n}\right) \sim \ln\left(1+\frac{1}{n^2}\right)$?

II ÉQUIVALENTS 119

Méthode 14.2.26 (Trouver un équivalent simple de $\ln(u_n)$)

- 1. Si $u_n \to 1$, utiliser l'équivalent classique
- 2. Sinon, écrire $u_n = v_n(1 + o(1))$, où v_n est un équivalent simple de u_n , puis $\ln(u_n) = \ln(v_n) + \ln(1 + o(1))$. Comparer ensuite les deux termes. Autrement dit, il s'agit de mettre le terme prépondérant en facteur dans le logarithme pour le sortir du logarithme.
- 3. Évidemment, cela s'adapte aux fonctions.

Exemple 14.2.27

Trouver un équivalent de $\ln \left(\sin \frac{1}{n}\right)$.

Méthode 14.2.28 (Trouver un équivalent de e^{u_n})

Développer u_n à o(1) près : $u_n = v_n + o(1)$. S'adapte aux fonctions.

Exemple 14.2.29

En admettant qu'au voisinage de 0, $\ln(1+x) = x - \frac{x^2}{2} + o(x^2)$, montrer que

$$e^{\frac{5}{x} + \frac{1}{x^2} \ln(1+x)} \sim \frac{e^{\frac{6}{x}}}{\sqrt{e}}.$$

Développements limités

J'ai bien dit des injures, et de bien grosses, à mon ami Mr Taylor [...] sur l'obscurité étonnante, et la mauvaise façon de son livre.

(Monmortius)

Le Calcul infinitésimal [...] est l'apprentissage du maniement des inégalités bien plus que des égalités, et on pourrait le résumer en trois mots : MAJORER, MINORER, APPROCHER.

(Jean Dieudonné)

Le but de ce chapitre est d'affiner l'étude locale d'une fonction au voisinage d'un point. L'étude des dérivées permet d'approcher localement une courbe par une droite (la tangente). Dans ce chapitre, nous généralisons ce point de vue en montrant comment les formules de Taylor permettent d'approcher une courbe au plus près (localement) par une courbe polynomiale de degré donné. Nous étudions ensuite la qualité de cette approximation, en majorant (localement ou globalement) l'erreur faite en approchant la courbe par cette courbe polynomiale. C'est l'objet de l'étude des restes de Taylor. Nous terminons par l'application de ces approximations polynomiales au calcul de limites, et par quelques outils permettant de calculer ces approximations sans avoir à revenir à la formule de Taylor (et donc au calcul bien fastidieux de toutes les dérivées successives). Il s'agit du calcul des développements limités.

Nous supposons connue les notions de fonction polynomiale réelle (que nous appellerons plus simplement polynôme), et de degré. Nous ne ferons qu'un usage intuitif de ces notions; il est inutile d'avoir étudié le chapitre sur les polynômes avant celui-ci. Un polynôme $x \mapsto P(x)$ sera aussi désigné formellement par P(X) (où X n'a plus le rôle d'une variable; c'est ce qu'on appelle une indéterminée formelle). On pourra donc parler du polynôme $X^2 + X + 1$ par exemple. On note $\mathbb{R}[X]$ l'ensemble de tous les polynômes à coefficients réels, et $\mathbb{R}_n[X]$ le sous-ensemble des polynômes de degré inférieur ou égal à n.

I Formule de Taylor-Young et DL des fonctions usuelles

Dans toute cette section, f désigne une fonction d'un intervalle I de \mathbb{R} vers \mathbb{R} , et $x_0 \in I$.

I.1 Développement de Taylor

But : étant donné n, définir un polynôme P de degré au plus n qui approche au mieux f au voisinage d'un point $x_0 \in I$. Tout d'abord, la valeur au point doit être la même : $P(x_0) = f(x_0)$. Ensuite, les deux courbes doivent être tangentes, ce qui impose que $P'(x_0) = f'(x_0)$. La variation des tangentes au voisinage de x_0 doit ensuite être la plus semblable possible, ce qui impose que $P''(x_0) = f''(x_0)$. Intuitivement, on en déduit que le meilleur polynôme de degré n approchant la courbe au voisinage de x_0 vérifie donc les conditions :

$$P(x_0) = f(x_0)$$
 $P'(x_0) = f'(x_0)$... $P^{(n)}(x_0) = f^{(n)}(x_0)$,

à condition bien sûr que ces dérivées de f soient définies. On dit que les courbes de P et f sont tangentes à l'ordre n en x_0 .

Définition 15.1.1 (Développement de Taylor de f)

Soit f une fonction admettant en x_0 une dérivée d'ordre n. Alors un développement de Taylor de f en x_0 à l'ordre n est un polynôme P de degré au plus n vérifiant les conditions :

$$P(x_0) = f(x_0), P'(x_0) = f'(x_0), \dots, P^{(n)}(x_0) = f^{(n)}(x_0).$$

donc un polynôme dont la courbe est tangente à l'ordre n à celle de f en x_0 .

Théorème 15.1.2 (Existence, unicité et expression du développement de Taylor de f)

Soit f une fonction n fois dérivable en x_0 . Alors le développement de Taylor de f en x_0 à l'ordre n existe, est unique, et est donné explicitement par :

$$\forall x \in \mathbb{R}, \ P(x) = \sum_{k=0}^{n} \frac{(x - x_0)^k}{k!} \cdot f^{(k)}(x_0).$$

Justifier d'abord que tout polynôme peut s'écrire sous la forme $\sum_{k=0}^{n} a_k (X - x_0)^k$ (récurrence sur le degré). Procéder par analyse synthèse pour trouver les a_k , en dérivant et évaluant en x_0 , de façon répétée.

Remarque 15.1.3

Le développement de Taylor à l'ordre 1 au voisinage de x_0 n'est autre que l'expression de la droite tangente à la courbe de f en x_0 . Les développements de Taylor sont donc à voir comme une généralisation polynomiale de la droite tangente, aux ordres supérieurs.

Définition 15.1.4 (Reste de Taylor à l'ordre n)

Si f admet en x_0 une dérivée d'ordre n, on note R_n la différence entre f et son développement de Taylor :

$$\forall x \in I, \ R_n(x) = f(x) - \sum_{k=0}^n \frac{(x-x_0)^k}{k!} \cdot f^{(k)}(x_0).$$

 R_n est appelé reste de Taylor à l'ordre n de f au point x_0 .

On note parfois $R_n(x, x_0)$ pour indiquer la dépendance vis-à-vis du point x_0 .

L'objet des formules de Taylor est d'étudier ce reste. Nous avons déjà vu comment estimer globalement (sur tout un intervalle [a, b]) ce reste à l'aide de la formule de Taylor avec reste intégral, donnant une valeur exacte de ce reste sous forme intégrale, lorsque f est de classe \mathcal{C}^{n+1} sur [a, b]:

$$\forall x \in [a, b], \quad f(x) = \sum_{k=0}^{n} \frac{(x - a)^k}{k!} \cdot f^{(k)}(a) + \int_{a}^{x} \frac{(x - t)^n}{n!} f^{(n+1)}(t) \, dt.$$

L'inégalité de Taylor-Lagrange permet d'obtenir des majorations ou minorations de ce reste sur tout un intervalle.

L'estimation qui nous intéresse maintenant est une estimation purement locale. On cherche à comparer le reste R_n à $(x-x_0)^n$, le terme de plus haut degré en $x-x_0$ du développement de Taylor. C'est l'objet de la formule de Taylor-Young.

Note Historique 15.1.5

Les formules de Taylor doivent leur nom au mathématicien anglais Brook Taylor (1685-1731). Il donne deux versions du théorème, dont l'une obtenue par généralisation d'un résultat de Halley (celui de la comète). On doit aussi à Brook Taylor la naissance du calcul des différences finies, et l'intégration par parties.

I.2 Formule de Taylor-Young

Théorème 15.1.6 (Formule de Taylor-Young à l'ordre n au point x_0)

Soit I un intervalle ouvert de \mathbb{R} , $x_0 \in I$, et $f: I \to \mathbb{R}$ une fonction de classe C^n au voisinage de x_0 . Alors, au voisinage de x_0 :

$$f(x) = \sum_{x \to x_0}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k + o((x - x_0)^n).$$

Cette formule est une conséquence de la formule de Taylor avec reste intégral prise à l'ordre n-1 (on n'a pas les hypothèses suffisantes pour aller à un ordre supérieur), en procédant à un encadrement à l'aide d' ε de l'intégrale.

Remarques 15.1.7

- 1. La formule de Taylor-Young ne nous donne qu'une information locale, au voisinage de x_0 . En aucun cas elle ne peut être utilisée pour une étude globale, contrairement à la formule de Taylor avec reste intégral ou à l'inégralité de Taylor-Lagrange.
- 2. La formule de Taylor-Young fournit ce qu'on appelle le développement limité de f au voisinage de x_0 à l'ordre n.

Note Historique 15.1.8

La formule de Taylor-Young a été démontrée par le mathématicien anglais William Henry Young (1863-1942), spécialiste de l'analyse complexe, de la théorie de la mesure et des séries de Fourier. Il ne doit pas être confondu avec Alfred Young (1873-1940), célèbre pour l'étude du groupe symétrique et de ses représentations, étude pour laquelle il introduit les tableaux qui portent son nom (tableaux de Young).

I.3 Développement limité des fonctions usuelles

Théorème 15.1.9 (DL des fonctions usuelles)

Lorsque x est au voisinage de 0, on a :

1.
$$e^x = \sum_{k=0}^{n} \frac{x^k}{k!} + o(x^n)$$

2.
$$\ln(1+x) = \sum_{x\to 0}^{n} \frac{(-1)^{k-1}x^k}{k} + o(x^n)$$

3.
$$\sin(x) = \sum_{x\to 0}^{n} \frac{(-1)^k x^{2k+1}}{(2k+1)!} + o(x^{2n+2})$$

4.
$$\cos(x) = \sum_{x\to 0}^{n} \frac{(-1)^k x^{2k}}{(2k)!} + o(x^{2n+1})$$

5.
$$\operatorname{sh}(x) = \sum_{k=0}^{n} \frac{x^{2k+1}}{(2k+1)!} + o(x^{2n+2})$$

6.
$$\operatorname{ch}(x) = \sum_{k=0}^{n} \frac{x^{2k}}{(2k)!} + o(x^{2n+1})$$

7.
$$(1+x)^{\alpha} = 1 + \sum_{k=1}^{n} \frac{\alpha(\alpha-1)\cdots(\alpha-k+1)}{k!} x^{k} + o(x^{n}).$$

Calculer les dérivées successives en 0 pour pouvoir utiliser la formule de Taylor-Young. Les fonctions sh et ch peuvent aussi s'obtenir à partir de leur définition en fonction de l'exponentielle.

Remarque 15.1.10 (Cas particuliers importants de la dernière formule)

- 1. Pour $a \in \mathbb{N}$, on retrouve le début du développement du binôme.
- 2. Au voisinage de 0,

$$\frac{1}{1+x} = \sum_{k=0}^{n} (-1)^k x^k + o(x^n) \qquad \text{et} \qquad \frac{1}{1-x} = \sum_{k=0}^{n} x^k + o(x^n).$$

On reconnait une troncature de série géométrique

II Généralités sur les développements limités

En général, il va être assez malaisé d'obtenir directement le DL d'une fonction à l'aide de la formule de Taylor-Young, car le calcul des dérivées successives s'avère en général trop fastidieux. Le but de la suite de ce chapitre est de donner quelques techniques plus efficaces de calcul de DL dans lesquels les DL des fonctions usuelles qu'on vient d'établir serviront de briques élémentaires. Avant de voir ces règles calculatoires, nous établissons quelques propriétés générales sur les DL.

II.1 Définition, exemples

Dans cette section, on se donne $x_0 \in \mathbb{R}$.

Définition 15.2.1 (Développement limité (DL) au voisinage d'un point)

Soit f une fonction définie sur un voisinage de x_0 . On dit que le polynôme $P_n \in \mathbb{R}_n[X]$ est un développement limité à l'ordre n de f en x_0 si, au voisinage de x_0 :

$$f(x) = P_n(x) + o((x - x_0)^n).$$

Remarque 15.2.2

On exprime généralement P_n dans la base $(1, X - x_0, (X - x_0)^2, \dots, (X - x_0)^n)$. Ainsi, un développement limité à l'ordre n sera la donnée de réels a_0, \dots, a_n tels que, au voisinage de x_0 ,

$$f(x) = a_0 + a_1(x - x_0) + \dots + a_n(x - x_0)^n + o((x - x_0)^n).$$

Le développement limité est donc une approximation polynomiale locale au voisinage d'un point. Il s'agit de la meilleure approximation par un polynôme de degré au plus n, au voisinage d'un point donné.

La formule de Taylor-Young donne de façon immédiate :

Théorème 15.2.3 (Existence du DL de fonctions de classe \mathcal{C}^n)

Si f est de classe C^n au voisinage de x_0 , alors f admet un développement limité à l'ordre n au voisinage de x_0 , égal au développement de Taylor-Young de f à l'ordre n.

Comme mentionné plus haut, si n > 1, l'existence de la dérivée n-ième suffirait en fait.

Théorème 15.2.4 (Unicité du DL)

Si f admet un développement limité à l'ordre n au voisinage de x_0 , alors ce développement est unique.

Sinon, considérer la première différence de deux DL (au degré k), et obtenir $x^k = o(x^k)$.

On en déduit en particulier :

Proposition 15.2.5 (DL de fonctions paires ou impaires)

Soit f une fonction admettant un DL à l'ordre n au voisinage de 0.

- 1. Si f est paire, son DL n'est constitué que de monômes de degré pair;
- 2. Si f est impaire, son DL n'est constitué que de monômes de degré impair.

Cas f pair : évaluer le DL en -x, et l'identifier au DL de x. Qu'est-ce qui autorise cette identification ? Même principe pour f impair.

Remarques 15.2.6

- 1. Toutes les fonctions n'admettent pas un DL en un point x_0 . Certaines fonctions peuvent admettre des DL jusqu'à un certain ordre n_0 et plus ensuite.
- 2. Attention! L'existence d'un DL à l'ordre n en x_0 n'implique pas l'existence de la dérivée n-ième de f en x_0 . Ainsi, tous les DL ne sont pas obtenus par la formule de Taylor-Young.
- 3. Cependant, pour les petits ordres :
 - Si f admet un DL à l'ordre 0 en x_0 , f est continue en x_0 ;
 - Si f admet un DL à l'ordre 1 en x_0 , f est dérivable en x_0 ;
 - et ça s'arrête là!

Exemples 15.2.7

- 1. $x \mapsto \sqrt{|x|}$ n'admet pas de DL à l'ordre 1 au voisinage de 0
- 2. La fonction $f: t \mapsto \cos(t) + t^3 \sin \frac{1}{t}$, prolongée en 0 par f(0) = 1, admet-elle un développement limité à l'ordre 2 en 0? Est-elle 2 fois dérivable en 0?

On peut renforcer un peu la définition des DL :

Définition 15.2.8 (DL au sens fort)

Soit f une fonction définie sur un voisinage de x_0 . On dit que le polynôme $P_n \in \mathbb{R}_n[X]$ est un développement limité au sens fort à l'ordre n de f en x_0 si, au voisinage de x_0 :

$$f(x) = P_n(x) + O((x - x_0)^{n+1}).$$

Cette définition est plus restrictive que la première, car il impose qu'il n'y ait pas, dans un développement à un ordre supérieur de f, de termes d'ordre non entier $(x-x_0)^{\alpha}$, $a \in]n, n+1[$, ni de terme logarithmique du type $(x-x_0)^n \ln(x-x_0)$, etc.

La propriété d'unicité reste vraie, ainsi que l'existence (si f est n+1 fois dérivable en x_0 , notez l'hypothèse plus forte!)

De la formule de Taylor-Young, nous déduisons donc les DL des fonctions usuelles. Ces DL, rappelés en fin de chapitre, serviront de briques pour la plupart des calculs de DL que nous effectuerons, grâce aux règles de calculs que nous établirons dans la suite de ce chapitre.

II.2 Restriction

Soit, pour $n \in \mathbb{N}$, $\mathbb{R}_n[X]$ l'ensemble des polynômes de degré au plus n. D'après la formule de Taylor pour les polynômes, tout polynôme P de $\mathbb{R}_n[X]$ peut s'écrire sous la forme

$$P(X) = a_0 + a_1(X - x_0) + \dots + a_n(X - x_0)^n.$$

Cette écriture est unique (cela provient du fait qu'on justifiera plus tard que $(1, X - x_0, ..., (X - x_0)^n)$ est une base de l'espace vectoriel $\mathbb{R}_n[X]$, mais peut aussi se voir comme une conséquence de l'unicité du développement limité à l'ordre n au voisinage de x_0). On peut alors définir :

Définition 15.2.9 (Troncature)

Soit $P = a_0 + a_1(X - x_0) + \dots + a_n(X - x_0)^n$ un polynôme de $\mathbb{R}_n[X]$, $x_0 \in \mathbb{R}$ et $m \leq n$. La troncature de P à l'ordre m au voisinage de x_0 est le polynôme $T_{m,x_0}(P)$ défini par :

$$T_{m,x_0}(P) = a_0 + a_1(X - x_0) + \dots + a_m(X - x_0)^m.$$

Proposition 15.2.10 (Restriction)

Si f admet un DL à l'ordre n au point x_0 , alors f admet des DL à tous ordres $m \leq n$, obtenus en tronquant le DL à l'ordre n à la puissance m-ième en $(x-x_0)^m$: autrement dit, si $m \leq n$,

$$f(x) = P(x) + o((x - x_0)^n) \Longrightarrow f(x) = T_{m,x_0}(P)(x) + o((x - x_0)^m).$$

C'est juste dire que les termes qu'on oublie rentrent dans le $o((x-x_0)^m)$, ce qui provient du fait que leur exposant est strictement supérieur à m.

Remarque 15.2.11

Si f n'admet pas de DL à l'ordre n_0 en x_0 , elle n'en admet pas non plus aux ordres supérieurs.

Exemple 15.2.12

Pour quels ordres $t \mapsto t^n \ln |t|$ admet-elle un DL au voisinage de 0?

II.3 Forme normalisée et partie principale

Pour faciliter la recherche des ordres minimaux de développement nécessaires lors de certaines opérations sur les DL, nous introduisons la forme normalisée d'un DL.

Proposition/Définition 15.2.13 (Forme normalisée d'un DL)

Soit f une fonction définie au voisinage de x_0 , admettant à l'ordre n un DL non nul. Alors il existe un unique entier $m \le n$ tel que, pour h au voisinage de 0, on ait :

$$f(x_0+h) = h^m(a_0+a_1h+\cdots+a_{n-m}h^{n-m}+o(h^{n-m})),$$

avec $a_0 \neq 0$. Il s'agit de la forme normalisée du DL à l'ordre n de f au voisinage de x_0 .

d Éléments de preuve.

Faire le changement de variable $h = x - x_0$ dans le DL (cela ramène à un DL en 0). Il suffit alors de factoriser par la puissance de h correspondant au premier terme non nul du DL (unique par unicité du DL).

Remarques 15.2.14

- La forme normalisée inclut le changement de variable $h = x x_0$. Dans la pratique, ce changement de variable est effectué de manière quasi-systématique, car il permet d'utiliser les DL des fonctions usuelles, tous donnés au voisinage de 0.
- m est l'ordre minimal pour lequel $\frac{f(x_0+h)}{h^m}$ ne tende pas vers 0 lorsque h tend vers 0. Plus précisément, $h \mapsto \frac{f(x_0+h)}{h^m}$ est prolongeable par continuité en une fonction g, non nulle en 0, et g admet un développement limité à l'ordre n-m en 0, égal à

$$g(h) = a_0 + a_1 h + \dots + a_{n-m} h^{n-m} + o(h^{n-m}).$$

La forme normalisée d'un DL permet notamment d'obtenir un équivalent de f.

Proposition 15.2.15 (Équivalent déduit d'un DL)

Soit f une fonction définie au voisinage de x_0 , telle que

$$f(x_0 + h) = h^m(a_0 + a_1h + \dots + a_{n-m}h^{n-m} + o(h^{n-m})), \quad a_0 \neq 0.$$

Alors $f(x_0 + h) \underset{h \to 0}{\sim} a_0 h^m$, c'est-à-dire $f(x) \underset{x \to x_0}{\sim} a_0 (x - x_0)^m$.

Par restriction, $f(x_0 + h) = a_0 h^m + o(h^m)$, puis caractérisation des équivalents par o.

Ainsi, le développement limité est à voir comme une généralisation et un affinement des équivalents : l'ordre le plus grossier d'un DL non trivial fournit l'équivalent, les termes suivants du DL permettent d'affiner l'approximation donnée par l'équivalent : ces termes ne sont pas accessibles directement par le calcul d'équivalent.

Définition 15.2.16 (Partie principale)

Soit f une fonction admettant, à un certain ordre n au voisinage de x_0 , un développement limité non trivial, s'écrivant sous forme normalisée :

$$f(x_0+h) = h^m(a_0+a_1h+\cdots+a_{n-m}h^{n-m}+o(h^{n-m})), \quad a_0 \neq 0.$$

La partie principale de f (sur l'échelle polynomiale) est la fonction $x \mapsto a_0(x-x_0)^m$. On dira dans cette situation que f admet une partie principale d'ordre m.

III Opérations sur les développements limités

On se limite dans tout ce paragraphe à des développements limités en 0; les fonctions usuelles étant développées en ce point, on se ramènera en pratique systématiquement à ce cas par un changement de variable.

Pour simplifier, on note simplement T_n pour l'application linéaire $T_{n,0}$ définie ci-dessus. $T_n(P)$ est donc obtenu de P en ne gardant que les monômes de degré inférieur ou égal à n dans l'écriture de P dans la base $(1, X, \ldots, X^k, \ldots)$.

III.1 Somme de DL

La règle la plus simple concerne la somme.

Proposition 15.3.1 (Somme de DL)

Soit f et g deux fonctions définies au voisinage de 0, et P et Q deux polynômes de degré au plus n. Si au voisinage de 0,

$$f(x) = P(x) + o(x^n)$$
 et $g(x) = Q(x) + o(x^n)$,

alors $(f+g)(x) = P(x) + Q(x) + o(x^n)$.

Autrement dit, si f et g admettent des DL à l'ordre n en 0, leur somme aussi, et ce DL est obtenu en sommant les DL de f et g.

Somme de o.

III.2 Produit de DL

Proposition 15.3.2 (Produit de DL)

Soit f et g deux fonctions définies au voisinage de 0, et P et Q deux polynômes de degré au plus n. Si au voisinage de 0,

$$f(x) \mathop{=}_{x \to 0} P(x) + o(x^n) \qquad et \qquad g(x) \mathop{=}_{x \to 0} Q(x) + o(x^n),$$

alors $(fg)(x) \underset{x\to 0}{=} T_n(PQ)(x) + o(x^n).$

Autrement dit, si f et g admettent des DL à l'ordre n en 0, leur produit aussi, et ce DL est obtenu en faisant le produit des DL de f et g, et en ne gardant que les monômes de degré inférieur ou égal à n.

P étant borné au voisinage de x_0 , $P(x)o(x^n) = o(x^n)$. En déduire d'abord $fg(x) = PQ(x) + o(x^n)$, puis mettre à la poubelle (dans o) les termes de trop grand exposant.

Exemples 15.3.3

1.
$$\frac{\cos(x)}{1+x} = 1 - x + \frac{x^2}{2} - \frac{x^3}{2} + o(x^3)$$
.

2.
$$(e^x)^2 = 1 + 2x + 2x^2 + \frac{4}{3}x^3 + o(x^3)$$
.

3.
$$\ln(1+x)^2 = x^2 - x^3 + \frac{11}{12}x^4 + o(x^4)$$
.

Remarque 15.3.4

- Dans le troisième exemple ci-dessus, les termes d'ordre 4 du DL de $\ln(1+x)$ n'interviennent pas dans le résultat final. Ceci était prévisible, car la partie principale de $\ln(1+x)$ au voisinage de 0 est d'ordre 1, donc le terme x^4 est au moins multiplié par un terme d'ordre 1, donc fournit dans le produit des termes d'ordre au moins égal à 5.
- \bullet De façon plus générale, si le première terme du développement de f n'est pas constant, on ne sera pas obligé d'aller jusqu'à l'ordre n pour le développement de g pour obtenir le développement à l'ordre n de fg. On pourrait établir une règle générale pour déterminer à quel ordre il convient d'aller, mais plutôt qu'une utilisation non comprise d'une règle stérile, il est préférable de réfléchir par soi-même au cas par cas.
- Évidemment, le deuxième exemple peut s'obtenir de façon beaucoup plus simple!

Exemple 15.3.5

1.
$$(\sin(x) - x)(\cos(x) - 1) = \frac{x^5}{x \to 0} \frac{x^7}{12} - \frac{x^7}{90} + o(x^8)$$
.

2.
$$\sin(x)^6 = x^6 - x^8 + o(x^9)$$
.

III.3 Composition de DL

Proposition 15.3.6 (Composition de DL)

Soit f et g des fonctions définies au voisinage de 0 telles que f(0) = 0, et soit $n \ge 1$. Si P et Q sont des développements limités de f et g en 0 à l'ordre n, alors $T_n(Q \circ P)$ est un DL en 0 à l'ordre n de $g \circ f$:

$$\left(f(x) \mathop{=}_{x \to 0} P(x) + o(x^n) \ et \ g(x) \mathop{=}_{x \to 0} Q(x) + o(x^n)\right) \quad \Longrightarrow \quad g \circ f(x) \mathop{=}_{x \to 0} T_n(Q \circ P)(x) + o(x^n).$$

Appliquer le DL de g à y = P(x), avec $y \to 0$ lorsque $x \to 0$ (par l'hypothèse f(0) = 0). Remarquer que P(x) = O(x) pour contrôler de o.

Exemples 15.3.7

1.
$$e^{\sin(x)} = 1 + x + \frac{x^2}{2} + o(x^3)$$
.

2.
$$e^{\cos(x)-1} = 1 - \frac{x^2}{2} + \frac{x^4}{6} + o(x^4)$$

Encore une fois, il n'est pas toujours nécessaire d'aller jusqu'à l'ordre n pour les deux fonctions : si le plus petit terme du développement de f est x^k , un terme y^ℓ du développement contribuera à des termes en x^ℓ de degré au moins $k\ell$. Ainsi, on peut se contenter de garder dans le développement de q uniquement les termes de degré ℓ tel que $k\ell \leqslant n$. Cela permet de diminuer l'ordre du développement de g d'un facteur multiplicatif k, ce qui est parfois bien appréciable.

Exemples 15.3.8
1.
$$\ln(\cos(x)) = -\frac{x^2}{2} - \frac{x^4}{12} + o(x^4)$$
.

2.
$$tan(sh(x) - x) = \frac{x^3}{3!} + \frac{x^5}{5!} + \frac{x^7}{7!} + o(x^8)$$
.

3.
$$\sin\left(\frac{x^2}{1+x^2}\right) - \frac{x^2}{1+x^2} = -\frac{x^6}{6} + \frac{x^8}{2} + o(x^9).$$

Méthode 15.3.9 (DL d'une réciproque)

Soit f une fonction bijective (au moins injective au voisinage de 0) de classe C^n , telle que f(0) = 0 et $f'(0) \neq 0$. Alors f^{-1} admet un DL à l'ordre n en 0. On peut le déterminer en identifiant les DL :

$$x = f^{-1} \circ f(x) + o(x^n),$$

fournissant n+1 équations dont les inconnues sont les coefficients du DL de f^{-1} . L'identification est possible du fait de l'unicité du DL.

Exemple 15.3.10

Montrer que $f: x \mapsto x \cos(x)$ est injective sur un voisinage de 0, et trouver le DL à l'ordre 3 d'une réciproque locale (réponse $f^{-1}(x) = x + \frac{x^3}{2} + o(x^3)$).

Remarque 15.3.11

- 1. Pourquoi considérer $f^{-1} \circ f$ plutôt que $f \circ f^{-1}$?
- 2. Trouver une CN sur l'ordre de la partie principale de f pour que f^{-1} admette un DL en 0 au même ordre que f.

III.4 Quotient de DL

Proposition 15.3.12 (DL d'un inverse)

Soit g une fonction définie sur un voisinage de 0, et ne s'annulant pas en 0. Si g admet un DL donné par le polynôme P en 0 à l'ordre n, alors $\frac{1}{g}$ et $\frac{1}{P}$ aussi, et les DL à l'ordre n en 0 de $\frac{1}{g}$ et $\frac{1}{P}$ sont les mêmes. Autrement dit, si P et Q sont deux polynômes de $\mathbb{R}_n[X]$, alors :

$$\left(g(0) \neq 0 \text{ et } g(x) \underset{x \to 0}{=} P(x) + o(x^n)\right) \Longrightarrow \left(\frac{1}{g(x)} \underset{x \to 0}{=} Q(x) + o(x^n) \Longleftrightarrow \frac{1}{P(x)} \underset{x \to 0}{=} Q(x) + o(x^n)\right).$$

Ainsi, si $g(0) \neq 0$, pour trouver un DL de $\frac{1}{g}$ à l'ordre n, il suffit d'inverser un DL à l'ordre n de g.

Former la différence $\frac{1}{g} - \frac{1}{P}$, réduire au même dénominateur, et utiliser $\frac{1}{gP} = O(1)$, par l'hypothèse faite sur g(0).

Méthode 15.3.13 (Calcul pratique du DL d'un quotient)

Soit g une fonction admettant un DL à l'ordre n au voisinage de 0, et telle que $g(0) \neq 0$. Soit P un polynôme de degré au plus n tel que au voisinage de 0, $g(x) = P(x) + o(x^n)$. Comme $g(0) \neq 0$, on a également $P(0) \neq 0$. Par conséquent, en mettant le terme constant non nul a de P en facteur, il existe un polynôme R de degré au plus n et s'annulant en 0, tel que :

$$\forall x \in \mathbb{R}, \ P(x) = a(1 + R(x)).$$

On a alors, au voisinage de 0:

$$\frac{1}{P(x)} = \frac{1}{a} \cdot \frac{1}{1 + R(x)} = T_n (1 - R + R^2 + \dots + (-1)^n R^n)(x) + o(x^n),$$

d'après la formule de composition appliquée à $h \circ R$, où h est la fonction $y \mapsto \frac{1}{1+y}$. On obtient donc, au voisinage de 0, d'après la proposition précédente :

$$\frac{1}{g(x)} = T_n(1 - R + R^2 + \dots + (-1)^n R^n)(x) + o(x^n).$$

Il peut parfois être plus judicieux d'écrire P = a(1 - R), car la formule de DL de $y \mapsto \frac{1}{1 - y}$ est encore plus simple.

Exemples 15.3.14 (Exemples archiclassiques, à savoir refaire jusqu'à l'ordre 5) 1. $\frac{1}{\cos x} = 1 + \frac{x^2}{2} + \frac{5x^4}{24} + \frac{61x^6}{720} + o(x^7)$.

1.
$$\frac{1}{\cos x} = 1 + \frac{x^2}{2} + \frac{5x^4}{24} + \frac{61x^6}{720} + o(x^7)$$

2.
$$\tan x = x + \frac{x^3}{3} + \frac{2x^5}{15} + \frac{17x^7}{315} + \frac{62x^9}{2835} + o(x^{10}).$$

Remarque 15.3.15

Si g(0) = 0, et si g admet une partie principale d'ordre v, on peut mettre x^v en facteur. Dans ce cas, on est ramené à une fonction $x\mapsto \frac{g(x)}{x^v}$ se prolongeant en une fonction h ne s'annulant pas en 0: au voisinage de 0 :

$$\frac{1}{g(x)} = \frac{1}{x^v} \cdot \frac{1}{h(x)}$$

Comme on divise par x^{v} , on obtiendra en fait un développement contenant également des puissances négatives de x. Ce n'est donc pas un DL. C'est ce qu'on appelle un développement asymptotique. On en reparlera un peu plus loin.

Exemple 15.3.16 $\frac{1}{x^2\cos(x)} = \frac{1}{x^2} + \frac{1}{2} + \frac{5}{24}x^2 + o(x^2)$

Il existe des techniques plus efficaces que la composition pour faire le quotient de deux DL, notamment pour des ordres importants, en particulier une adaptation de la division euclidienne des polynômes, faite en inversant l'ordre (et le rôle) des monômes. C'est ce qu'on appelle la division suivant les puissances croissantes. Cette méthode est hors-programme. Pour les petits ordres, la technique exposée ci-dessus est amplement suffisante.

III.5Primitivation d'un DL

Proposition 15.3.17 (Primitivation d'un DL)

Soit f une fonction dérivable au voisinage de 0, dont la dérivée admet un DL à l'ordre n-1 au voisinage de 0, donné par :

$$f'(x) = a_0 + a_1 x + \dots + a_{n-1} x^{n-1} + o(x^{n-1}).$$

Alors f admet au voisinage de 0 un DL à l'ordre n, donné par :

$$f(x) = f(0) + a_0 x + \frac{a_1}{2} x^2 + \dots + \frac{a_{n-1}}{n} x^n + o(x^n).$$

Il s'agit juste de primitiver $o(x^{n-1})$. Le faire par IAF (on ne peut pas le faire par intégration, on n'a pas l'hypothèse de continuité locale de f').

Méthode 15.3.18

Pour primitiver terme à terme un DL, ne pas oublier :

- de primitiver également le $o(x^{n-1})$;
- de préciser le terme constant (constante d'intégration), égal à f(0).

Exemples 15.3.19

- 1. DL de Arctan x, Arcsin(x) et Arccos(x) en 0 à tous ordres.
- 2. Du même accabit, mais hors-programme: Argth, Argsh, Argch.

3. Arctan
$$\left(\frac{x^2+1}{x-2}\right) = -\operatorname{Arctan}\left(\frac{1}{2}\right) - \frac{1}{5}x - \frac{12}{25}x^2 - \frac{56}{375}x^3 + o(x^3).$$

Remarque 15.3.20

Dans le cas de fonctions de classe C^n au voisinage de 0, la formule de primitivation de DL peut être vue comme une conséquence immédiate de la formule de Taylor-Young.

III.6 Dérivation

La dérivation de DL se passe moins bien que l'intégration. En effet, contrôler l'intégrale d'un o se fait bien, par majoration : si un terme est petit, son intégrale aussi, sur un intervalle donné. En revanche, un terme peut être petit, mais avoir de très fortes variations locales (petites oscillations très pentues). Ainsi, la dérivation d'un o n'est en général pas contrôlable. Il faut de ce fait des hypothèses fortes pour pouvoir dériver un DL, en revenant à la formule de Taylor-Young.

Proposition 15.3.21 (Dérivation d'un DL)

Soit f une fonction de classe C^n au voisinage de 0, admettant (donc) un DL à l'ordre n au voisinage de 0:

$$f(x) = a_0 + a_1 x + \dots + a_n x^n + o(x^n).$$

Alors f' admet un DL à l'ordre n-1 en 0, égal à

$$f'(x) = a_1 + 2a_2x + 3a_3x^2 + \dots + na_nx^{n-1} + o(x^{n-1}).$$

déléments de preuve.

Formule de Taylor-Young appliquée à f', exprimer les dérivées successives de f' (donc de f) en utilisant la formule de Taylor-Young appliquée à f et l'unicité des DL, qui permet d'identifier avec le DL fourni.

IV Développements asymptotiques

On peut également définir des « développements limités » en la variable x au voisinage de $+\infty$: dans ce cas, on se ramène à 0 par un changement de variables $y=\frac{1}{x}$. Ainsi, un DL en $+\infty$ est un polynôme en la variable $\frac{1}{x}$. On parle plutôt dans ce cas de développement asymptotique.

Exemple 15.4.1
$$\frac{x^2 - 1}{x^2 + x + 1} = 1 - \frac{1}{x} - \frac{1}{x^2} + \frac{2}{x^3} + o\left(\frac{1}{x^3}\right).$$

Un développement limité permet de comparer localement une fonction à une fonction polynomiale, donc à situer la fonction sur une échelle de comparaison constituée de fonctions $x \mapsto (x-x_0)^n$, $n \in \mathbb{N}$. Dans le cas de fonctions non bornées au voisinage d'un point, on peut être amené à introduire des puissances négatives de $(x-x_0)$, afin de mesurer la divergence locale. On parlera là encore de développement asymptotique d'ordre n pour une approximation du type

$$f(t) = \sum_{k=n_0}^{n} a_k (x - x_0)^k,$$

l'entier n_0 étant dans \mathbb{Z} .

Exemple 15.4.2 $\frac{1}{\sinh(x)} = \frac{1}{x \to 0} - \frac{x}{6} + \frac{7}{360}x^3 + o(x^4).$

Avertissement 15.4.3

Si f a un développement asymptotique commençant par un terme de degré -k, pour obtenir un DL à l'ordre n du produit fg, il faut augmenter l'ordre du DL de g jusqu'à n+k (car on divisera ensuite par x^k). N'oubliez pas de le faire! Encore une fois, réfléchissez bien aux ordres nécessaires pour chaque développement.

Exemples 15.4.4

1.
$$\frac{e^x - 1}{\cos(x) - 1} = \frac{2}{x \to 0} - \frac{1}{2}x + o(x)$$

2.
$$\frac{\sin(x) - x}{\ln(1+x) - x} = \frac{x}{x \to 0} \frac{x}{3} + \frac{2x^2}{9} + o(x^2).$$

On peut être amené à affiner la comparaison, en insérant des fonctions intermédiaires entre les puissances entières x^n . La notion essentielle permettant de définir correctement des développements asymptotiques est la notion d'échelle de comparaison. Les définitions que nous allons voir généralisent toutes celles données jusqu'à présent.

Définition 15.4.5 (Échelle de comparaison, HP)

Une échelle de comparaison au voisinage de t_0 est une famille \mathcal{E} de fonctions, définies et non identiquement nulles au voisinage de t_0 , et telles que pour tout f et tout g de \mathcal{E} tels que $f \neq g$, on ait soit f = o(g), soit g = o(f).

Autrement dit, les fonctions de l'échelle de comparaison peuvent toutes se classer les unes par rapport aux autres, par ordre de prépondérance. Cette situation est à comparer au cas d'un ensemble totalement ordonné. On peut en fait se ramener à cette situation en considérant la relation d'ordre définie sur l'ensemble des fonctions non identiquement nulles au voisinage de 0 par $f \leq g$ si et seulement si f = o(g) ou f = g. On pourrait aussi définir cette relation sur un ensemble quotient de l'ensemble des fonctions définies au voisinages de x_0 par la relation d'équivalence définie par $f \equiv g$ si et seulement si f et g coincident sur un voisinage de x_0 (on parle de germes de fonctions).

Exemples 15.4.6 (Échelles de comparaison)

- 1. $x \mapsto (x x_0)^n$, $n \in \mathbb{N}$, au voisinage de x_0 (échelle polynomiale).
- $2. x \mapsto x^n, n \in \mathbb{Z}$
- 3. $x \mapsto x^{\alpha}$, $\alpha \in \mathbb{R}_+$, au voisinage de 0^+ .

- 4. $x \mapsto x^{\alpha}$, $\alpha \in \mathbb{R}$, au voisinage de 0^+ ou $+\infty$.
- 5. $x \mapsto x^{\alpha} \ln^{\beta}(x)$ au voisinage de 0^+ ou de $+\infty$.
- 6. $x \mapsto x^{\alpha}(\ln(x))^{\beta}(\ln(\ln(x)))^{\gamma}$ au voisinage de $+\infty$, etc.
- 7. $x \mapsto x^{\alpha} e^{P(x)}$, P polynôme sans terme constant

On définit alors :

Définition 15.4.7 (Développement asymptotique)

Un développement asymptotique d'une fonction f sur une échelle de comparaison \mathcal{E} au voisinage de x_0 à la précision $\varphi \in \mathcal{E}$ est la donnée d'une approximation de f de la forme :

$$f(x) = \sum_{\substack{\psi \in \mathcal{E} \\ \varphi = o(\psi) \text{ ou } \psi = \varphi}} a_{\psi} \psi(x) + o(\varphi(x)),$$

où la somme a un nombre fini de termes non nuls.

Ainsi, un développement limité à l'ordre n n'est rien d'autre qu'un développement asymptotique sur l'échelle $(x \mapsto (x - x_0)^k)_{k \in \mathbb{N}}$, avec la précision $x \mapsto (x - x_0)^n$.

Exemples 15.4.8

1.
$$\frac{1}{\sqrt{1+\sqrt{x}}} = 1 - \frac{1}{2}\sqrt{x} + \frac{3}{8}x - \frac{5}{16}x\sqrt{x} + \frac{35}{128}x^2 + o(x^2).$$

2.
$$\frac{\sin(x)}{1 + x\sqrt{x} \cdot \ln(x)} = x - x^2 \sqrt{x} \ln(x) - \frac{x^3}{6} + x^4 \ln^2(x) + o(x^4).$$

La plupart des techniques précédentes s'adaptent. Il faut bien sûr être très vigilant sur la manipulation des o. On peut remarquer que la notion de partie principale se généralise aussi, mais dépend de l'échelle de comparaison choisie :

Définition 15.4.9 (Partie principale relativement à une échelle de comparaison)

Soit f une fonction admettant sur une échelle de comparaison $\mathcal E$ un développement asymptotique :

$$f(x) = \sum_{\substack{\psi \in \mathcal{E} \\ \varphi = o(\psi) \text{ ou } \psi = \varphi}} a_{\psi} \psi(x) + o(\varphi(x)).$$

Soit ψ_0 tel que $a_{\psi_0} \neq 0$, et tel que $a_{\psi} = 0$ pour tout ψ de \mathcal{E} vérifiant $\psi_0 = o(\psi)$. Alors la partie principale de f relativement à l'échelle de comparaison \mathcal{E} est la fonction $a_{\psi_0}\psi_0$.

Il s'agit donc de la partie prépondérante d'un développement asymptotique non trivial de f sur cette échelle. En particulier, on remarquera que f est équivalente à sa partie principale au voisinage de x_0 .

Exemples 15.4.10

- 1. $\sqrt{x} + x^2 + x^3$ sur l'échelle $(x^{\alpha})_{\alpha \in \mathbb{R}}$, au voisinage de 0
- 2. $\sqrt{x} + x^2 + x^3$ sur l'échelle $(x^{\alpha}(1+x))_{\alpha \in \mathbb{R}}$, au voisinage de 0.

V Applications 135

V Applications

V.1 Courbes polynomiales asymptotes à une courbe

Méthode 15.5.1 (Recherche de courbes polynomiales asymptotes)

Pour trouver les courbes polynomiales (par exemple les droites) asymptotes à la courbe de f en $+\infty$, il suffit de faire un DA à l'ordre 0 de f en $+\infty$. En effet, les termes de degré négatifs de ce DA forment une partie polynomiale. On obtient donc (en cas d'existence d'un tel DA), pour un certain $m \in \mathbb{N}$:

$$f(x) = a_m \left(\frac{1}{x}\right)^{-m} + \dots + a_0 + o(1) = a_m x^m + \dots + a_0 + o(1).$$

Cela signifie que $\lim_{x\to +\infty} f(x) - (a_m x^m + \dots + a_0) = 0$. Par définition, cela revient à dire que la courbe polynomiale d'équation $y = a_m x^m + \dots + a_0$ est asymptote à la courbe de f en $+\infty$.

Méthode 15.5.2 (Position de la courbe par rapport à une courbe asymptote)

Pour trouver la position de la courbe de f par rapport à une courbe polynomiale asymptote (par exemple une droite asymptote), il suffit d'étudier le signe du terme de plus petit exposant strictement positif) dans le DA. Par exemple, si ce terme est le terme de degré 1, on va obtenir, au voisinage de $+\infty$:

$$f(x) = a_m x^m + \dots + a_0 + \frac{b}{x} + o\left(\frac{1}{x}\right)$$
 donc: $f(x) - (a_m x^m + \dots + a_0) \underset{+\infty}{\sim} \frac{b}{x}$.

Ainsi, $f(x) - (a_m x^m + \dots + a_0)$ est du signe de $\frac{b}{x}$ au voisinage de $+\infty$, donc du signe de b; cela fournit la position, au voisinage de $+\infty$ de la courbe de f par rapport à la courbe polynomiale asymptote $x \mapsto a_m x^m + \dots + a_0$.

Exemple 15.5.3

Montrer que la parabole d'équation $y = ex^2 + \frac{e}{2}x - \frac{e}{24}$ est asymptote à la courbe de $f: x \mapsto x^2 \left(1 + \frac{1}{x}\right)^{1+x}$, et que la courbe de f est au-dessus de l'asymptote (le terme d'ordre 1 est $\frac{e}{48x}$).

V.2 Extréma

Supposons que f admet un DL à un certain ordre $k \ge 1$ au voisinage de x_0 , de la forme : $f(x) = a_0 + a_k(x - x_0)^k + o((x - x_0)^k)$, avec $a_k \ne 0$. Alors

- f admet un point critique en x_0 si et seulement si k > 1
- la courbe de f présente alors un extremum en x_0 si et seulement si k est pair; il s'agit d'un maximum si $a_k < 0$ et d'un minimum si $a_k > 0$.

En d'autres termes :

Proposition 15.5.4 (Étude d'un point critique)

Soit f admettant en x_0 un point critique. Alors :

- f admet un extremum en x_0 si et seulement si la partie principale de $x \mapsto f(x) f(x_0)$ au voisinage de x_0 est d'ordre pair;
- dans ce cas, si $a(x-x_0)^{\alpha}$ désigne cette partie principale, f admet un minimum local en x_0 si a>0 et un maximum local si a<0.

L'équivalence avec la partie principale et la propriété de conservation du signe permettent de conclure.

Ainsi, pour savoir si f admet un extremum local en un point critique x_0 , il suffit de trouver le premier terme non nul de degré strictement positif du DL de f en x_0

VI Développements limités des fonctions usuelles

Les développements limités suivants sont à bien connaître. Les dernières lignes sont les cas particuliers les plus fréquents de la formule du DL de $(1+x)^{\alpha}$.

$$\begin{array}{c} \textbf{Th\'eor\`eme 15.6.1 (DL des fonctions classiques)} \\ 1. \ e^x \underset{x \to 0}{=} 1 + x + \frac{x^2}{2!} + \dots + \frac{x^n}{n!} + o(x^n) \underset{x \to 0}{=} \sum_{k=0}^{x^k} \frac{x^k}{k!} + o(x^n) \\ 2. \ \ln(1+x) \underset{x \to 0}{=} x - \frac{x^2}{2} + \frac{x^3}{3} + \dots + \frac{(-1)^{n-1}x^n}{n} + o(x^n) \underset{x \to 0}{=} \sum_{k=0}^{n} \frac{(-1)^{k-1}x^k}{k} + o(x^n). \\ 3. \ \cos(x) \underset{x \to 0}{=} 1 - \frac{x^2}{2!} + \dots + \frac{(-1)^nx^{2n}}{(2n)!} + o(x^{2n+1}) \underset{x \to 0}{=} \sum_{k=0}^{n} \frac{(-1)^kx^{2k}}{(2k)!} + o(x^{2n+1}). \\ 4. \ \sin(x) \underset{x \to 0}{=} x - \frac{x^3}{3!} + \dots + \frac{(-1)^nx^{2n+1}}{(2n+1)!} + o(x^{2n+2}) \underset{x \to 0}{=} \sum_{k=0}^{n} \frac{(-1)^kx^{2k+1}}{(2k+1)!} + o(x^{2n+2}). \\ 5. \ \tan(x) \underset{x \to 0}{=} x + \frac{x^3}{3} + \frac{2}{15}x^5 + o(x^5). \\ 6. \ \operatorname{Arctan}(x) \underset{x \to 0}{=} x - \frac{x^3}{3} + \frac{x^5}{5} + \dots + (-1)^n\frac{x^{2n+1}}{2n+1} + o(x^{2n+2}) \underset{x \to 0}{=} \sum_{k=0}^{n} (-1)^k\frac{x^{2k+1}}{2k+1} + o(x^{2n+2}) \\ 7. \ \operatorname{ch}(x) \underset{x \to 0}{=} 1 + \frac{x^2}{2!} + \dots + \frac{x^{2n}}{(2n)!} + o(x^{2n+1}) \underset{x \to 0}{=} \sum_{k=0}^{n} \frac{x^{2k}}{(2k)!} + o(x^{2n+1}). \\ 8. \ \operatorname{sh}(x) \underset{x \to 0}{=} x + \frac{x^3}{3!} + \dots + \frac{x^{2n+1}}{(2n+1)!} + o(x^{2n+2}) \underset{x \to 0}{=} \sum_{k=0}^{n} \frac{x^{2k+1}}{(2k+1)!} + o(x^{2n+2}). \\ 9. \ \operatorname{th}(x) \underset{x \to 0}{=} x + \frac{x^3}{3!} + \frac{2}{15}x^5 + o(x^5). \\ 10. \ (1+x)^{\alpha} \underset{x \to 0}{=} 1 + ax + \frac{\alpha(\alpha-1)}{2!} x^2 + \dots + \frac{\alpha(\alpha-1) \dots (\alpha-n+1)}{n!} x^n + o(x^n) \\ \underset{x \to 0}{=} \sum_{k=0}^{n} \frac{\alpha(\alpha-1) \dots (\alpha-k+1)}{k!} x^k + o(x^n). \\ 11. \ \frac{1}{1+x} \underset{x \to 0}{=} 1 - x + x^2 + \dots + (-1)^nx^n + o(x^n) \underset{x \to 0}{=} \sum_{k=0}^{n} (-1)^kx^k + o(x^n). \\ 12. \ \frac{1}{1-x} \underset{x \to 0}{=} 1 + x + x^2 + \dots + x^n + o(x^n) \underset{x \to 0}{=} \sum_{k=0}^{n} x^k + o(x^n). \\ 14. \ \frac{1}{\sqrt{1+x}} \underset{x \to 0}{=} 1 - \frac{1}{2}x + \frac{3}{8}x^2 - \frac{1}{5}x^3 + o(x^3) \\ \end{array}$$

Séries numériques

Si sur une grandeur d, on prend la moitié, puis la moitié de la moitié puis encore la moitié du reste, et ainsi de suite sans limitation de divisions, la grandeur obtenue en additionnant une moitié de chaque division successive (division appelée dichotomie) ne pourra jamais être égale exactement à la distance d. Avant d'arriver à son but, un mobile doit arriver à la moitié de son parcours. Mais auparavant, il doit arriver à la moitié de la moitié... Le mobile doit parcourir une quantité infinie d'unités d'espace. Il n'arrivera donc jamais à son but.

(Aristote, paradoxe de la dichotomie, dérivé du paradoxe de Zénon d'Élée)

Les séries divergentes sont une invention du diable, et c'est une honte de les utiliser dans la moindre démonstration

(Niels Abel)

Qu'est-ce qu'une série? Répondre à cette question pose un certain nombre de problèmes. Intuitivement, ainsi que nous l'avons vu, une série est un objet collectant les différentes sommes des premiers termes d'une suite. Autrement dit, il s'agit d'un point de vue sur les suites, différent du point de vue usuel, puisqu'il s'agit ici de considérer les suites au travers de leurs sommes partielles. Mais comment définir de façon spécifique un objet qui existe déjà, et dont on veut simplement modifier le point de vue? Définir une série comme un objet $\sum u_n$ de sommes de termes (u_n) nécessite de s'être donné une suite (u_n) , et de considérer les sommes partielles S_n associées à cette suite. Ainsi, une définition correcte d'une série serait de la définir comme un couple $((u_n), (S_n))$ de deux suites, la seconde correspondant à la somme partielle de la première. De la sorte, on définit la suite (u_n) (u_n) est le terme général de la série) ainsi que le point de vue (le fait que l'on considère les sommes partielles). Certains auteurs se contentent de définir une série comme la suite des sommes partielles d'une suite $(u_n)_{n\in\mathbb{N}}$, mais cette définition sous-entend la donnée initiale d'une suite (u_n) et ne diffère donc par réellement de la définition formelle sous forme d'un couple. Même si cette définition est formellement moins rigoureuse, c'est celle-ci que nous retiendrons, afin de ne pas trop mystifier un objet somme toute assez simple à appréhender.

I Notion de série et de convergence

I.1 Définitions

Définition 16.1.1 (Série)

(i) Soit $(u_n)_{n\in\mathbb{N}}$ une suite de réels ou complexes. La série de terme général u_n , notée $\sum_{n\geqslant 0}u_n$, ou plus simplement $\sum u_n$, est, avec l'abus mentionné dans l'introduction du chapitre, la suite $(S_n)_{n\in\mathbb{N}}$

des sommes partielles de la suite (u_n) , à savoir :

$$S_n = \sum_{k=0}^n u_k.$$

(ii) S_n est appelé somme partielle (d'ordre n) de la série $\sum u_n$, et u_n est appelé terme général de la série $\sum u_n$.

Remarques 16.1.2

1. La donnée de la suite (S_n) des sommes partielles de $\sum u_n$ permet de retrouver le terme général u_n de la série, puisque

$$u_0 = S_0$$
 et $\forall n \in \mathbb{N}^*, u_n = S_n - S_{n-1}.$

2. La définition se généralise de façon évidente pour des séries dont le premier terme est u_{n_0} , $n_0 \in \mathbb{N}$ (ou même $n_0 \in \mathbb{Z}$).

Avertissement 16.1.3

Attention à ne pas confondre suite $(u_n)_{n\in\mathbb{N}}$ et série de terme général u_n .

La comparaison à des séries de référence permettra d'obtenir des critères efficaces de convergence, rendant en général l'étude de la convergence des séries beaucoup plus aisée que celle des suites. Pour cette raison, il est souvent intéressant de pouvoir ramener l'étude de la convergence d'une suite à celle d'une série, via la relation de la remarque précédente :

Méthode 16.1.4 (Comment étudier la convergence d'une suite via les séries)

La convergence de la suite $(u_n)_{n\in\mathbb{N}}$ équivaut à la convergence de la série $\sum (u_{n+1} - u_n)$. C'est un moyen pratique de démontrer la convergence de certaines suites, en utilisant les techniques spécifiques et performantes des séries.

Définition 16.1.5 (Convergence d'une série)

(i) On dit que la série $\sum u_n$ de terme général u_n converge si la suite $(S_n)_{n\in\mathbb{N}}$ de ses sommes partielles admet une limite finie. On note alors

$$\sum_{n=0}^{+\infty} u_n = \lim_{n \to +\infty} S_n.$$

Cette quantité est appelée somme de la série de terme général u_n .

- (ii) Une série non convergente est dite divergente.
- (iii) Soit $\sum_{n\in\mathbb{N}}u_n$ une série convergente, et soit $n\in\mathbb{N}.$ Le n-ième reste de la série est :

$$r_n = \sum_{k=n+1}^{+\infty} u_k = \sum_{k=0}^{+\infty} u_k - S_n.$$

(iv) La nature de la série $\sum u_n$ est le fait d'être convergente ou divergente.

Remarque 16.1.6

Par convention, afin de ne pas avoir d'ambiguïté dans la terminologie, nous parlerons de série divergente également lorsque nous adopterons un point de vue dans $\overline{\mathbb{R}}$, dans le cas d'une série dont les sommes partielles tendent vers $+\infty$ ou $-\infty$. Nous nous autoriserons cependant parfois dans cette situation à écrire l'égalité suivante, valable dans $\overline{\mathbb{R}}$

$$\sum_{n=0}^{+\infty} u_n = +\infty \quad \text{ou} \quad \sum_{n=0}^{+\infty} u_n = -\infty.$$

Avertissement 16.1.7

Toute série divergente ne diverge pas vers $+\infty$ ou $-\infty$!

Exemple 16.1.8

$$\sum (-1)^n$$

Nous verrons plus loin qu'une façon efficace de montrer la convergence d'une série est de la comparer à une autre série dont on connaît les propriétés de convergence. Pour cette raison, il est important de connaître les propriétés de convergence d'un certain nombre de séries de référence. De l'importance du théorème suivant!

Théorème 16.1.9 (Séries géométriques)

Soit
$$a \in \mathbb{C}$$
. La série $\sum a^n$ converge si et seulement si $|a| < 1$; dans ce cas, $\sum_{n=0}^{+\infty} a^n = \frac{1}{1-a}$.

L'exemple suivant est également d'une grande importance (peut-être encore plus que les séries géométriques). Nous nous contentons de l'indiquer en exemple pour le moment : nous énoncerons un théorème plus général un peu plus tard.

Exemple 16.1.10 (Série de Riemann de paramètre 1)

La série $\sum_{n\geqslant 1}\frac{1}{n}$ est divergente. Cette série est appelée série harmonique

I.2 Propriétés liées à la convergence

Soit $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ deux suites.

Proposition 16.1.11

 $Si(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ ne diffèrent que d'un nombre fini de termes, alors $\sum u_n$ et $\sum v_n$ sont de même nature.

Éléments de preuve.

À partir d'un certain rang, la différence des sommes partielles est constante.

Théorème 16.1.12 (CN de convergence portant sur le terme général)

 $Si \sum u_n$ converge, alors $(u_n)_{n \in \mathbb{N}}$ tend vers 0. De manière équivalente, si $(u_n)_{n \in \mathbb{N}}$ ne tend pas vers 0, alors $\sum u_n$ diverge.

Écrire
$$u_n = S_n - S_{n-1}$$
.

Définition 16.1.13 (Divergence grossière)

Si $(u_n)_{n\in\mathbb{N}}$ ne tend pas vers 0, on dit que $\sum u_n$ diverge grossièrement.

Avertissement 16.1.14

La réciproque est fausse. Une série dont le terme général est de limite nulle peut diverger. C'est le cas par exemple de $\sum \frac{1}{n}$. Ainsi, il existe des séries divergentes sans être grossièrement divergentes.

Proposition 16.1.15 (Linéarité)

Soit λ et μ deux complexes.

1. Si $\sum u_n$ et $\sum v_n$ convergent, alors $\sum (\lambda u_n + \mu v_n)$ converge, et:

$$\sum_{n=0}^{+\infty} (\lambda u_n + \mu v_n) = \lambda \sum_{n=0}^{+\infty} u_n + \mu \sum_{n=0}^{+\infty} v_n.$$

- 2. Si $\sum u_n$ converge et $\sum v_n$ diverge, alors $\sum (u_n + v_n)$ diverge.
- 3. Si $\sum u_n$ et $\sum v_n$ divergent, on ne peut rien conclure sur $\sum u_n + v_n$.

Linéarité des sommes finies, et propriété des limites sur les CL, appliquée aux sommes partielles. >

II Séries à termes positifs

Dans tout ce paragraphe, sauf indication contraire, on considère des séries $\sum u_n$, à termes positifs, c'està-dire telles que pour tout $n \in \mathbb{N}$, $u_n \ge 0$. On peut transcrire facilement tout ce qui suit :

- au cas où : $\exists N \in \mathbb{N}, \ \forall n \geqslant N, \ u_n \geqslant 0 \ ((u_n)_{n \in \mathbb{N}}$ est positive à partir d'un certain rang) : en effet deux séries ne différant que d'un nombre fini de termes ont même nature ;
- au cas d'une série à termes tous négatifs puisque $\sum a_n$ et $\sum (-a_n)$ ont même nature.

II.1 Comparaisons entre séries à termes positifs

La plupart des règles rendant l'étude des séries à terme positifs plutôt aisée résultent du résultat suivant, scholie du théorème de convergence monotone des suites.

Proposition 16.2.1 (Convergence dans $\overline{\mathbb{R}}$ d'une série à termes positifs)

Soit $\sum u_n$ une série à termes positifs. Alors soit $\sum u_n$ converge, soit elle diverge vers $+\infty$.

La somme partielle est croissante.

En particulier, on en déduit le premier résultat de comparaison des séries, duquel découle tous les autres :

Théorème 16.2.2 (Théorème de comparaison des séries à termes positifs, TCSTP)

Soit $\sum u_n$ et $\sum v_n$ deux séries à termes positifs telles qu'il existe $N \in \mathbb{N}$ tel que pour tout $n \geqslant N$, $0 \leqslant u_n \leqslant v_n$. Alors :

- 1. $si \sum v_n$ converge, $\sum u_n$ converge aussi;
- 2. $si \sum u_n$ diverge, $\sum v_n$ diverge aussi. De plus, si la divergence est grossière pour $\sum u_n$, elle l'est aussi pour $\sum v_n$.

La propriété précédente auquelle on ajoute l'information de majoration apportée par la convergence de $\sum v_n$.

Le deuxième point (si on omet le cas de divergence grossière) n'est évidemment rien de plus que la contraposée du premier.

Il faut bien comprendre qu'une série $\sum u_n$ est la somme de plein de u_n : si les u_n (positifs) sont suffisamment petits la somme ne grossit pas trop vite et converge; si les u_n ne deviennent pas assez vite petits, en revanche, la somme grossit trop vite et diverge.

Ainsi, une inégalité du type $0 \le u_n \le v_n$ permet de contrôler la taille des éléments que l'on somme. Si $\sum v_n$ converge, cela signifie que les v_n restent assez petits, donc les u_n aussi. Inversement, si $\sum u_n$ diverge, cela signifie que les u_n ne deviennent pas petits assez vite, donc les v_n non plus!

II.2 Convergence absolue et semi-convergence

Avant de voir d'autres théorèmes de comparaison découlant directement du théorème ci-dessus, voyons une conséquence importance de ce théorème, permettant souvent de ramener l'étude de séries à termes quelconques à des études de séries à termes positifs. Ceci est particulièrement intéressant du fait que pour les séries à termes positifs, on dispose d'outils d'étude assez efficaces, en particulier les théorèmes de comparaison.

Définition 16.2.3 (Convergence absolue)

On dit que $\sum u_n$ converge absolument si la série $\sum |u_n|$ est convergente.

Comme l'indique bien la terminologie, nous avons :

Théorème 16.2.4 (Convergence absolue entraîne convergence)

Toute série réelle ou complexe absolument convergente est convergente.

Rappel: pour une série réelle, décomposer en partie positive et partie négative, et utiliser $0 \le x^+ \le |x|$ et le TCSTP. Pour les séries complexes, décomposer en partie réelle et partie imaginaire.

C'est cette propriété qui permet bien souvent de ramener l'étude d'une série quelconque à l'étude d'une série à termes positifs. Ce n'est malheureusement pas toujours possible :

Avertissement 16.2.5

La réciproque est fausse. Il existe des séries convergentes, mais pas absolument convergentes.

Exemple 16.2.6

Pour $\alpha \in]0,1]$, la série $\sum_{n\geqslant 1} \frac{(-1)^n}{n^{\alpha}}$ est convergente, mais pas absolument convergente. On montre sa convergence en montrant que les deux suites extraites (S_{2n}) et (S_{2n+1}) de la suite de ses sommes partielles sont adjacentes.

Définition 16.2.7 (Série semi-convergente)

Si $\sum u_n$ est convergente sans être absolument convergente, on dit que la série est semi-convergente.

Ainsi, par exemple, la série harmonique alternée $\sum \frac{(-1)^n}{n}$ est semi-convergente.

II.3D'autres théorèmes de comparaison

Le théorème de comparaison des séries à termes positifs suggère, assez logiquement, que ce qui importe pour assurer la convergence d'une série, c'est que ses termes soient suffisamment petits lorsque n devient grand, donc c'est la vitesse de convergence de u_n vers 0: plus u_n converge vite vers 0, plus la série a de chances d'être convergente. Ceci se traduit bien par des propriétés de dominance ou de négligeabilité, fournissant notre deuxième critère de convergence. Comme les relations de dominance et de négligeabilité s'exprime par des majorations des valeurs absolues, on obtiendra même ainsi des critères de convergence absolue.

Théorème 16.2.8 (Comparaison des séries par domination ou négligeabilité)

Soit $\sum u_n$ une série à termes quelconque, et $\sum v_n$ une série à termes positifs telles que $u_n = O(v_n)$ (ou $u_n = o(v_n)$). Alors:

- la convergence de $\sum v_n$ entraı̂ne la convergence absolue de $\sum u_n$.
- la divergence de $\sum u_n$ (celle de $\sum |u_n|$ suffit) entraı̂ne la divergence de $\sum v_n$.

On a $|u_n| \leq Mv_n$ à partir d'un certain rang, puis TCSTP.

Il paraît alors raisonnable de se dire que deux séries dont les termes généraux se comportent sensiblement de la même façon en $+\infty$ sont de même nature. Cela constitue notre troisième critère de comparaison pour les séries à termes positifs.

Théorème 16.2.9 (Théorème de comparaison de séries à termes positifs par équivalence) Soit $\sum u_n$ et $\sum v_n$ deux séries à termes positifs. Si $u_n \underset{+\infty}{\sim} v_n$, alors les séries $\sum u_n$ et $\sum v_n$ sont de même nature.

On a $u_n = O(v_n)$ et $v_n = O(u_n)$. Cette propriété est plus généralement vraie avec $u_n = \Theta(v_n)$, à termes positifs.

Avertissement 16.2.10

Ce résultat est faux si on ne suppose pas la positivité des séries!

Exemple 16.2.11

Contre-exemple dans le cas de séries à termes quelconques : $\sum \frac{(-1)^n}{\sqrt{n}}$ converge et $\sum \frac{(-1)^n}{\sqrt{n} + (-1)^n}$ diverge. Pourtant : $\frac{(-1)^n}{\sqrt{n}} \sim \frac{(-1)^n}{\sqrt{n} + (-1)^n}$.

II.4 Comparaison entre une série et une intégrale

La somme est la version discrète de l'intégrale. Si une fonction f évolue « de façon raisonnable » entre deux valeurs entières, on peut espérer que $\sum f(n)$ et $\int_0^{+\infty} f(t) \, dt$ ont les mêmes propriétés de convergence. On peut le faire par encadrement des sommes partielles par des intégrales, comme on l'a fait en début d'année. Ces encadrements peuvent d'ailleurs aussi donner des résultats plus précis (équivalents des restes ou des sommes partielles).

On présente cette méthode de façon un peu plus conceptuelle, en la combinant avec le TCSTP. On commence par un lemme caractérisant la convergence des intégrales (de fonctions positives) par une convergence discrète

Lemme 16.2.12 (Caractérisation discrète de la convergence de $\int_a^{+\infty} f(t) dt$, $f \geqslant 0$)

Soit f une application positive, continue sur $[a, +\infty[$, et $n_0 \geqslant a$. L'intégrale $\int_a^{+\infty} f(t) dt$ converge si et seulement si la série de terme général $\left(\int_n^{n+1} f(t) dt\right)_{n\geqslant n_0}$ converge.

C'est bien sûr Chasles, d'abord. Puis la croissance de $x \mapsto \int_{n_0}^x f(t) dt$, qui assure l'existence d'une limite dans $\overline{\mathbb{R}}$ quand x tend vers $+\infty$.

Théorème 16.2.13 (Théorème de comparaison entre série et intégrale)

Soit $a \in \mathbb{R}_+$ et soit $f : [a, +\infty[\to \mathbb{R} \text{ une fonction décroissante continue et positive. Alors } \sum_{n \geqslant a} f(n)$ converge si et seulement si $\int_a^{+\infty} f(t) dt$ converge.

d Éléments de preuve.

Encadrer sur un intervalle [n, n+1] par décroissance de f:

$$f(n+1) \leqslant \int_{n}^{n+1} f(t) \, \mathrm{d}t \leqslant f(n),$$

puis utiliser le TCSTP et le lemme.

En d'autres termes, sous les hypothèses du théorème, la série $\sum_{n\geqslant a}f(n)$ et l'intégrale $\int_a^{+\infty}f(t)\,\mathrm{d}t$ sont de même nature.

La méthode d'encadrement développée ci-dessus est utile dans d'autres circonstances, par exemple pour obtenir des équivalents de sommes partielles (en cas de divergence) ou de restes (en cas de convergence).

II.5 Séries de référence

Pour pouvoir utiliser efficacement les théorèmes de comparaison, il faut disposer d'un certain nombre de séries de référence, dont on connaît bien le comportement, et auxquelles nous pourrons comparer les autres séries. Nous avons déjà vu les séries géométriques :

Théorème 16.2.14 (Nature des séries géométriques)

Soit $z \in \mathbb{C}$. La série $\sum z^n$ converge si et seulement si |z| < 1. La convergence est alors absolue, tandis que la divergence est grossière.

Théorème 16.2.15 (Nature des séries exponentielles)

La série exponentielle $\sum \frac{z^n}{n!}$ est absolument convergente, pour toute valeur de $z \in \mathbb{C}$ (sa somme étant

La convergence a déjà été démontrée pour $x \in \mathbb{R}$ par la formule de Taylor avec reste intégrale (en exercice), ce qui est suffisant pour obtenir la CVA dans le cas général. On donnera plus loin une autre justification basé sur le critère de d'Alembert. Par ailleurs, la valeur de la somme a été également obtenue par la formule de Taylor dans le cas réel; on le justifiera plus tard dans le cas complexe en utilisant le théorème du produit de Cauchy (voir fin du chapitre).

Enfin, la troisième famille de séries de référence est constituée des séries de Riemann.

Définition 16.2.16 (Série de Riemann)

La série de Riemann de paramètre $\alpha \in \mathbb{R}$ est la série $\sum_{i=1}^{n} \frac{1}{n^{\alpha}}$.

Du théorème de comparaison entre séries et intégrales, on déduit :

Théorème 16.2.17 (Nature des séries de Riemann)

Soit $\alpha \in \mathbb{R}$. La série de Riemann $\sum_{i=1}^{n} \frac{1}{n^{\alpha}}$ converge si et seulement si $\alpha > 1$.

Dans le cas $\alpha > 0$, cela s'obtient par comparaison série-intégrale : les intégrales obtenues se calculent explicitement. Dans le cas $\alpha \leq 0$, on a divergence grossière.

Voici une autre famille, généralisant les séries de Riemann, souvent prise en référence, mais hors-programme (à savoir réétudier rapidement) :

Proposition 16.2.18 (Nature des séries de Bertrand, HP)

La série de Bertrand de paramètre $(\alpha, \beta) \in \mathbb{R}^2$, définie par $\sum_{n>2} \frac{1}{n^{\alpha} \ln^{\beta} n}$, est convergente si et seulement $si(\alpha, \beta) > (1, 1)$ pour l'ordre lexicographique.

Le cas limite $\alpha=1$ s'obtient par comparaison série-intégrale. Les autres cas s'obtiennent par comparaison à une série de Riemann, et seront développés en exemple d'application des critères de comparaison donnés dans le paragraphe suivant.

Remarque 16.2.19

L'ordre de grandeur de la limite entre convergence et divergence, égal à $\frac{1}{n}$ sur l'échelle $\left(\frac{1}{n^{\alpha}}\right)$ donnée par les séries de Riemann, peut être affinée en $\frac{1}{n\ln(n)}$ sur l'échelle donnée par les séries de Bertrand. Les séries de Bertrand peuvent en fait être généralisées en ajoutant au dénominateur d'autres termes, puissances de composées successives du logarithme. On peut montrer que la limite de convergence s'obtient, comme plus haut, pour l'ordre lexicographique, pour tous les exposants égaux à 1. Par exemple $\sum \frac{1}{n^{\alpha} \ln^{\beta}(n) \ln^{\gamma}(\ln n) \ln^{\delta}(\ln(\ln(n)))}$ converge si et seulement si $(\alpha, \beta, \gamma, \delta) > (1, 1, 1, 1)$.

II.6 Comparaison avec une série de Riemann

Des comparaisons avec les séries de référence, on déduit un certain nombre de critères de convergence assez efficaces. Ces critères n'étant pas explicitement au programme, il convient de bien se souvenir de la manière de les obtenir rapidement à partir des résultats généraux de comparaison. Connaître ces critères hors-programme permet toutefois de savoir rapidement comment diriger son raisonnement.

Théorème 16.2.20 (Règle de Riemann, ou règle « $n^{\alpha}u_n$ »)

Soit $\sum u_n$ une série à termes positifs.

- 1. S'il existe $\alpha > 1$ tel que $n^{\alpha}u_n \longrightarrow 0$, alors $\sum u_n$ converge.
- 2. Si $nu_n \to +\infty$, alors $\sum u_n$ diverge.
- √ Éléments de preuve.
 - 1. On a alors $u_n = o(\frac{1}{n^{\alpha}})$.
 - 2. On a alors $\frac{1}{n} = o(u_n)$. On conclut par contraposée du théorème de comparaison.

 \triangleright

Exemple 16.2.21

Séries de Bertrand.

II.7 Comparaison avec une série géométrique

Théorème 16.2.22 (Règle de d'Alembert)

Soit $\sum u_n$ une série à termes quelconques. On suppose que $\left(\left|\frac{u_{n+1}}{u_n}\right|\right)$ admet une limite ℓ . Alors :

- 1. Si $0 \le \ell < 1$, alors $\sum u_n$ converge absolument.
- 2. Si $\ell > 1$, alors $\sum u_n$ diverge grossièrement.
- 3. Si $\ell = 1$, on ne peut pas conclure par cette méthode.
- - 1. À partir d'un certain rang, on peut majorer (u_n) par une série géométrique de raison $\ell' \in]\ell, 1[$
 - 2. De même dans l'autre sens, ou plus simplement, (u_n) est strictement croissante à partir d'un certain rang donc grossièrement divergente.
 - 3. Chercher des exemples variés parmi les séries de référence.

Exemples 16.2.23

- 1. On peut retrouver de manière élémentaire, et sans référence à la fonction exponentielle, la convergence de $\sum \frac{z^n}{n!}$
- 2. Plus généralement, ce critère est souvent très efficace pour l'étude des séries du type $\sum a_n z^n$ (séries entières). Par exemple $\sum n \ln(n) z^n$.

III Étude de la semi-convergence

III.1 Séries alternées

Le premier cas simple de semi-convergence facile à étudier est le cas de toutes les séries s'étudiant de la même façon que $\sum \frac{(-1)^n}{n}$. En étudiant de plus près la preuve de la convergence de cette série, on se rend compte que les propriétés nécessaires à établir cette convergence sont celles rassemblées dans le définition suivante :

Définition 16.3.1 (Série alternée)

On dit qu'une série $\sum u_n$ est alternée s'il existe une suite positive décroissante de limite nulle (a_n) telle que $u_n = (-1)^n a_n$.

Nous avons déjà justifié une partie du résultat ci-dessous :

Théorème 16.3.2 (Théorème spécial de convergence des séries alternées, TSCSA)

- 1. Toute série alternée est convergente
- 2. Ses sommes partielles sont du signe du premier terme.
- 3. Ses restes sont du signe de leur premier terme et majorés en valeur absolue par ce premier terme.

Rappel rapide : (S_{2n}) et (S_{2n+1}) sont deux suites adjacentes. La monotonie de S_{2n} et S_{2n+1} permet d'obtenir également les deux propriétés sur les sommes partielles et les restes.

Avertissement 16.3.3

N'oubliez pas l'hypothèse de décroissance dans la définition des séries alternées. Sans cette hypothèse, le TSCSA entre en défaut.

Exemple 16.3.4

 $\sum \frac{(-1)^n}{\sqrt{n} + (-1)^n}$ est une série dont le terme général tend vers 0 et a un signe qui alterne. Cependant elle est divergente. C'est la série que nous avons déjà utilisée pour contredire le théorème de comparaison par équivalents pour des séries à termes quelconques.

III.2 Critère d'Abel

Le critère d'Abel généralise le TSCSA, permettant par exemple de remplacer le signe $(-1)^n$ par un terme $\cos(\alpha n)$ ou $\sin(\alpha n)$, ou par une exponentielle complexe $e^{i\alpha n}$. En particulier, contrairement au cas des séries alternées, il est utilisable dans le cas complexe.

IV Familles sommables 147

Théorème 16.3.5 (Critère d'Abel, HP)

- 1. Soit $\sum a_n b_n$ une série telle que (a_n) soit réelle positive décroissante de limite nulle, et telle que la suite (B_n) des sommes partielles de $\sum b_n$ soit bornée. Alors $\sum a_n b_n$ converge.
- 2. Les suites (b_n) définies par $b_n = e^{i n\alpha}$, $\cos(n\alpha)$ et $\sin(n\alpha)$ remplissent les conditions requises, lorsque $\alpha \neq 0$ $[2\pi]$.

Faire une transformation d'Abel en écrivant $b_n = B_n - B_{n-1}$: regrouper les B_n , étudier la convergence absolue par majoration, en remarquant qu'une des hypothèses permet de se débarrasser des valeurs absolues sur les différences de a_i , ce qui nous ramène à un type de série très particulier s'étudiant très facilement.

Les cas particuliers s'obtiennent par calcul explicite et majoration de B_n .

Exemples 16.3.6

- 1. La convergence des séries alternées peut être vu comme un cas particulier de ce théorème
- 2. $\sum \frac{\cos n}{\sqrt{n}}$ converge
- 3. $\sum \frac{z^n}{n}$ converge si et seulement si $|z| \le 1$ et $z \ne 1$.

IV Familles sommables

Il n'est pas très dur de remarquer qu'en général, changer l'ordre de sommation dans une série modifie la valeur de la somme et même les propriétés de convergence (lorsque la série est semi-convergente initialement). Ainsi, l'ordre dans lequel s'effectue la sommation semble avoir une importance. Dans de nombreuses situations pourtant, on souhaite sommer des valeurs sans avoir un ordre privilégié. C'est le cas par exemple pour les calculs de probabilités, ou d'espérance, n'ayant pas d'ordre privilégié sur l'ensemble des valeurs prises par une variable X, n'ayant pas la possibilité en général de les numéroter dans l'ordre croissante, s'il y a des points d'accumulation).

Nous présentons dans ce chapitre un moyen de s'affranchir de cet ordre de sommation sous certaines hypothèses.

IV.1 Familles sommables de nombres réels positifs

On rappelle que l'opération $a + \infty$ est bien définie, égale à $+\infty$ pour tout $a \in \overline{\mathbb{R}}_+$. En particulier, tout couple $(a,b) \in \overline{\mathbb{R}}_+$ peut être sommé dans $\overline{\mathbb{R}}_+$.

Par ailleurs, $\overline{\mathbb{R}}_+$ peut être muni d'une relation d'ordre total prolonngeant l'ordre de \mathbb{R}_+ en posant $+\infty \geqslant a$ pour tout $a \in \overline{\mathbb{R}}_+$. Tout sous-ensemble X de $\overline{\mathbb{R}}_+$ admet alors une borne supérieur dans $\overline{\mathbb{R}}_+$ muni de cet ordre :

- $\bullet\,$ s'il est non vide et majoré par un réel, d'après la propriété fonndamentale de $\mathbb R$
- s'il est non vide et maoré par aucun réel, alors $+\infty$ est son seul majorant, donc aussi le plus petit des majorant.
- s'il est vide, tout élément de $\overline{\mathbb{R}}_+$ est un majorant donc le plus petit des majorants (la borne supérieure) est 0.

Remarquez l'importance de bien préciser l'ensemble ordonné de référence pour le dernier cas : la borne supérieure de \emptyset dans $\overline{\mathbb{R}}_+$ n'est pas la même que dans $\overline{\mathbb{R}}$ entier.

Pour tout ensemble I, on note $\mathcal{P}_f(I)$ l'ensemble des parties finies de I.

Pour motiver la définition de la sommabilité, on reexprime la convergence d'une série à termes positifs de façon à ne plus faire intervenir l'ordre (infini) de sommation, grâce à une version symétrisée dans laquelle toutes les sommes finies ont des rôles équivalents, et plus seulement les sommes partielles.

Théorème 16.4.1 (Reexpression de la convergence des STP)

Soit $\sum a_n$ une STP. Alors $\sum_{k=0}^{+\infty} a_n$ est bien définie dans $\overline{\mathbb{R}}$ et

$$\sum_{k=0}^{+\infty} a_n = \sup \left\{ \sum_{k \in J} a_k, \quad J \in \mathcal{P}_f(\mathbb{N}) \right\}.$$

En particulier, $\sum a_n$ converge ssi l'ensemble de toutes les sommes finies est majoré.

- - Toute somme finie est majorée par une somme partielle donc par la somme totale
 - Réciproquement, les sommes partielles sont des sommes sur une partie finie.

Cette propriété motive la définition suivante :

Définition 16.4.2 (Somme quelconque de termes positifs)

Soit I un ensemble quelconque et $(a_i)_{i\in I}$ une famille d'éléments de $\overline{\mathbb{R}}_+$ (éventuellement infinis). On définit

$$\sum_{i \in I} a_i = \sup_{\overline{\mathbb{R}}_+} \left\{ \sum_{j \in J} a_j, \quad J \in \mathcal{P}_f(I) \right\}.$$

Proposition 16.4.3 (somme d'inégalités)

Soit $(a_i)_{i\in I}$ et $(b_i)_{i\in I}$ deux familles à valeurs dans $\overline{\mathbb{R}}_+$. Si pour tout $i\in I$, $a_i\leqslant b_i$, alors

$$\sum_{i \in I} a_i \leqslant \sum_{i \in I} b_i.$$

Les sommes finies des a_i sont majorées par les sommes finies correspondantes des b_i , donc par la somme totale des b_i .

Définition 16.4.4 (Sommabilité)

Avec les notations ci-dessus, on dit que la famille $(a_i)_{i\in I}$ est sommable si $\sum_{i\in I} a_i < +\infty$.

Proposition 16.4.5 (Sommabilité et somme d'une famille finie)

Si I est fini, et $(a_i)_{i\in I}$ une famille de réels positifs (non infinis), alors $(a_i)_{i\in I}$ est sommable et sa somme correspond à la somme finie usuelle.

La somme finie sur I est le maximum (donc la borne supérieure) de l'ensemble des sommes finies. \triangleright

IV Familles sommables 149

Proposition 16.4.6 (STP et familles sommables)

Soit $\sum a_n$ une STP.

1. Alors $\sum_{n=0}^{+\infty} a_n = \sum_{n \in \mathbb{N}} a_n$

(le terme de gauche étant la somme de la série, le terme de droite étant la somme de la famille sommable).

2. En particulier, $\sum a_n$ converge ssi $(a_n)_{n\in\mathbb{N}}$ est sommable.

Corollaire 16.4.7 (Invariance de la somme d'une STP par permutation des termes)

Soit $\sum a_n$ une STP et $\sigma \in \mathfrak{S}(\mathbb{N})$ une permutation de \mathbb{N} . Alors

$$\sum_{n=0}^{+\infty} a_n = \sum_{n=0}^{+\infty} a_{\sigma(n)}.$$

Cette égalité étant valide dans $\overline{\mathbb{R}}_+$, en particulier, les deux séries ont même nature.

La permutation σ induit une permutation $J \mapsto \sigma(J)$ de $\mathcal{P}_f(\mathbb{N})$. Ainsi, les sommes finies sont les mêmes pour les deux séries, donc leur borne supérieure aussi. Remarquez que c'est aussi valide pour $i = \emptyset$.

Remarque 16.4.8

La somme de termes positifs étant toujours définie dans $\overline{\mathbb{R}}_+$, les calculs (et les majorations) effectués sur la somme sont valides sans avoir de justification de convergence à faire a priori. Cela nous autorisera dans de nombreux calculs liés à des probabilités (calculs d'espérance) à faire les calculs avant l'étude de convergence et à justifier la convergence a posteriori, par l'obtention d'un résultat non infini Attention toutefois à n'utiliser cet argument que pour des familles positives!

On montre le théorème d'associativité ci-dessous, qui est en fait un théorème de sommation par paquets.

Théorème 16.4.9 (Associativité pour les familles positives)

Soit I un ensemble quelconque, $(I_k)_{k\in K}$ un recouvrement disjoint de I. Soit $a=(a_i)_{i\in I}$ une famille d'éléments de $\overline{\mathbb{R}}_+$. Alors

$$\sum_{i \in I} a_i = \sum_{k \in K} \left(\sum_{i \in I_k} a_i \right).$$

- Tout sous ensemble fini J de I est réunion disjointe des $J \cap I_k$ qui sont eux-mêmes finis et dont seul un nombre fini est non vide. Cela donne une première inégalité en passant au sup.
- Réciproquement, partir de $K' \subset K$ fini, et $I'_k \subset I_k$ finis. La somme sur les indices correspondants est majorée par la somme totale (dans $\overline{\mathbb{R}}_+$) passer au sup pour récupérer chacun des I_k . Puis encore le sup pour récupérer K.

Corollaire 16.4.10 (Théorème de Fubini positif)

Soit I et J deux ensembles quelconques, et $(a_{i,j})_{(i,j)\in I\times J}$ une famille d'éléments de $\overline{\mathbb{R}}_+$. Alors

$$\sum_{i \in I} \sum_{j \in J} a_{i,j} = \sum_{(i,j) \in I \times J} a_{i,j} = \sum_{j \in J} \sum_{i \in I} a_{i,j}.$$

Il suffit d'écrire
$$I \times J = \biguplus_{i \in I} \{i\} \times J = \biguplus_{j \in J} I \times \{j\}$$

Corollaire 16.4.11

Soit $(a_i)_{i\in I}$ et $(b_i)_{i\in I}$ deux familles positives d'éléments de $\overline{\mathbb{R}}_+$, et $\lambda > 0$. Alors

$$\sum_{i \in I} a_i + \lambda b_i = \sum_{i \in I} a_i + \lambda \sum_{i \in I} b_i.$$

C'est Fubini, avec $J = \{1, 2\}$ (pour séparer a_i et b_i). Sortir λ ne pose pas de problème.

Cette relation est valide dans $\overline{\mathbb{R}}_+$, les termes eux-mêmes pouvant être infinis. En particulier, on obtient alors :

Corollaire 16.4.12

Soit $(a_i)_{i\in I}$ et $(b_i)_{i\in I}$ deux familles positives sommables, et $\lambda > 0$. Alors $(a_i + \lambda b_i)$ est aussi sommable.

IV.2 Famille sommable de nombres complexes

Définition 16.4.13 (Famille sommable)

- Soit $(a_i)_{i\in I}$ une famille de réels ou complexes. On dit que $(a_i)_{i\in I}$ est sommable si la famille de réels positifs $(|a_i|)_{i\in I}$ est sommable, i.e. si $\sum_{i\in I} |a_i| < +\infty$.
- On note $\ell^1(I)$ l'ensemble des familles sommables indexées sur I. Pour être plus précis, on peut noter $\ell^1(I,X)$ l'ensemble des familles sommables indexées sur I à valeurs dans $X \subset \mathbb{C}$.

Remarque 16.4.14

- Toute famille finie est sommable
- $(a_n)_{n\in\mathbb{N}}$ est sommable ssi $\sum a_n$ est absolument convergente.

Proposition 16.4.15 (Sommabilité des sous-familles)

Toute sous-famille $(a_j)_{j\in J}$ $(J\subset I)$ d'une famille sommable est sommable.

Théorème 16.4.16 (Théorème de comparaison)

Soit $(u_i)_{i\in I}$ une famille de complexes et $(v_i)_{i\in I}$ une famille de réels positifs tels que pour tout $i\in I$, $|u_i|\leqslant v_i$. Si $(v_i)_{i\in I}$ est sommable, alors $(u_i)_{i\in I}$ l'est aussi.

IV Familles sommables 151

Sommer les inégalités

Proposition 16.4.17 (Caractérisation de la sommabilité par Re, Im, + et -)

- Soit $(a_i)_{i\in I}$ une famille de réels. Alors $(a_i)_{i\in I}$ est sommable ssi $(a_i^+)_{i\in I}$ et $(a_i^-)_{i\in I}$ le sont.
- Soit $(a_i)_{i\in I}$ une famille de complexes. Alors $(a_i)_{i\in I}$ est sommable ssi $(\operatorname{Re}(a_i))_{i\in I}$ et $(\operatorname{Im}(a_i))_{i\in I}$ le sont.

Dans un sens, les parties positives ou négatives se majorent en fonction de $|a_i|$. Dans l'autre, écrire le module comme somme de a_i^+ et a_i^- . Pour le cas complexe, c'est un peu similaire, mais en majorant le module cette fois par la somme des valeurs abolues de la partie réelle et de la partie imaginaire. \triangleright

Définition 16.4.18 (Somme d'une famille sommable de réels, de complexes)

• Soit $(a_i)_{i \in I} \in \ell^1(I, \mathbb{R})$. On définit :

$$\sum_{i \in I} a_i = \sum_{i \in I} a_i^+ - \sum_{i \in I} a_i^-.$$

• Soit $(a_i)_{i\in I}\in \ell^1(I,\mathbb{C})$. On définit :

$$\sum_{i \in I} a_i = \sum_{i \in I} \operatorname{Re}(a_i) + i \sum_{i \in I} \operatorname{Im}(a_i).$$

Proposition 16.4.19 (Caractérisation par ε de la somme)

Soit $(a_i)_{i\in I}\in\mathbb{C}^I$ et $S\in\mathbb{C}$. Les deux propriétés suivantes sont équivalentes :

- (i) $(a_i)_{i \in I} \in \ell^1(I, \mathbb{C}), \text{ et } S = \sum_{i \in I} a_i$
- (ii) Pour tout $\varepsilon > 0$, il existe $J_{\varepsilon} \in \mathcal{P}_f(I)$ tel que pour tout $K \in \mathcal{P}_f(I)$ vérifiant $J_{\varepsilon} \subset K$,

$$\left| S - \sum_{i \in K} a_i \right| \leqslant \varepsilon.$$

- Pour le sens direct, commencer par le cas de familles de réels : pour le sens direct, remarquer que $I = I_+ \sqcup I_-$, où I_+ est l'ensemble des indices tels que $a_i \ge 0$, et I_- l'ensemble des indices tels que $a_i < 0$. Approcher $\sum_{i \in I} a_i^+$ et $\sum_{i \in I} a_i^-$ à $\frac{\varepsilon}{2}$ près par des sommes finies sur des sous-ensembles de I_+ et I_- .
- Toujours pour le sens direct dans le cas complexe, utiliser le cas réel sur $(\text{Re}(a_i))_{i\in I}$ et $(\text{Im}(a_i))_{i\in I}$, puis considérer l'union des $J_{\varepsilon/2}$ et $J'_{\varepsilon/2}$ associés.
- Réciproquement, si S et S' vérifient tous deux cette propriété, en considérant J_{ε} et J'_{ε} associés à chacun des deux complexes S et S', et $K = J_{\varepsilon} \cup J'_{\varepsilon}$, montrer que $|S S'| \leq 2\varepsilon$.

 \triangleright

Théorème 16.4.20 (Linéarité de la somme)

L'ensemble $\ell^1(I)$ est un \mathbb{C} -espace vectoriel, et $(a_i)_{i\in I} \mapsto \sum_{i\in I} a_i$ est une forme linéaire sur $\ell^1(I)$.

En d'autres termes, si $(a_i)_{i\in I}$ et $(b_i)_{i\in I}$ sont deux familles sommables de complexes, et $\lambda \in \mathbb{C}$, alors $(a_i + \lambda b_i)_{i\in I}$ est encore sommable, et

$$\sum_{i \in I} (a_i + \lambda b_i) = \sum_{i \in I} a_i + \lambda \sum_{i \in I} b_i.$$

- - La sommabilité de la CL est évidente par majoration du tg par IT.
 - La linéarité se montre alors facilement à l'aide de la caractérisation précédente.

Proposition 16.4.21 (Cas des séries)

Une suite $(a_n)_{n\in\mathbb{N}}$ est sommable si et seulement si elle est absolument convergente. On a alors

$$\sum_{n=0}^{+\infty} a_n = \sum_{n \in \mathbb{N}} a_n.$$

De plus, la somme est invariante par permutation des termes

L'invariance par permutation peut s'obtenir en deux temps, d'abord pour les séries réelles (en utilisant l'invariance par permutation des sommes des a_n^+ et des a_n^-), puis pour les séries complexes (en utilisant l'invariance par permutation des sommes des $\text{Re}(a_n)$ et des $\text{Im}(a_n)$). On peut aussi l'obtenir en une fois par la caractérisation ci-dessus par ε , qui est indépendante d'un ordre qu'on se serait donné sur les éléments de I.

Théorème 16.4.22 (Associativité pour les familles sommables)

Soit $(I_k)_{k\in K}$ un recouvrement disjoint de I.Soit $a=(a_i)_{i\in I}$ une famille de réels ou complexes. Alors a est sommable si et seulement chaque $(a_i)_{i\in I_k}$ $(k\in K)$ est sommable, de somme s_k et de somme absolue t_k , et si la famille $(t_k)_{k\in K}$ est sommable. Dans ce cas, (s_k) est également sommable, et :

$$\sum_{i \in I} a_i = \sum_{k \in K} s_k = \sum_{k \in K} \sum_{i \in I_k} a_i.$$

En décomposant en partie réelle et partie imaginaire, on peut se contenter du cas où les a_i sont réels. En décomposant en partie positive et partie négative, on peut se ramener au cas positif, qu'on a déjà traité. Pour comparer les sommabilités, regarder dans ce cas les conditions pour obtenir une somme finie.

Corollaire 16.4.23 (Théorème de Fubini)

Soit I et J et $(a_{i,j})_{(i,j)\in I\times J}$ une famille de réels ou complexes.

• Alors $(a_{i,j})_{(i,j)\in I\times J}$ est sommable si et seulement si pour tout $i\in I$, $(a_{i,j})_{j\in J}$ est sommable, et $\left(\sum |a_{i,j}|\right)$ est sommable.

• On obtient une CNS de sommabilité similaire en intervertissant i et j.

IV Familles sommables 153

• En cas de sommabilité, on a alors :

$$\sum_{i \in I} \sum_{j \in J} a_{i,j} = \sum_{j \in J} \sum_{i \in I} a_{i,j}.$$

Comme avant, il suffit d'écrire
$$I \times J = \bigsqcup_{i \in I} \{i\} \times J = \bigsqcup_{j \in J} I \times \{j\}$$

La sommabilité peut s'exprimer sur les sommes simples successives plutôt que sur la famille doublement indexée, en vertu du théorème d'associativité.

Théorème 16.4.24 (Produit de familles sommables)

Soit $(a_i)_{i\in I}$ et $(b_j)_{j\in J}$ deux familles sommables. Alors $(a_ib_j)_{(i,j)\in I\times J}$ est sommable, et

$$\sum_{(i,j)\in I\times J} a_i b_j = \left(\sum_{i\in I} a_i\right) \left(\sum_{j\in J} b_j\right).$$

Ce résultat se généralise évidemment à un produit d'un plus grand nombre de familles.

La sommabilité peut s'obtenir par l'équivalence exprimée dans le théorème d'associativité (remarque faite après Fubini), ou de façon directe, en majorant la somme des $|a_ib_j|$ sur un sous-ensemble fini de $I \times J$ par la somme sur un produit cartésien fini $I' \times J'$. L'égalité résulte ensuite du théorème de Fubini et de la linéarité.

Lorsque $I = J = \mathbb{N}$, on repartitionne souvent ensuite $\mathbb{N} \times \mathbb{N}$ en diagonales. On obtient :

Théorème 16.4.25 (Produit de Cauchy)

Soit $\sum_{n\geqslant 0} a_n$ et $\sum_{n\geqslant 0} b_n$ deux séries absolument convergentes. Soit pour tout $n\in\mathbb{N}$,

$$c_n = \sum_{k=0}^n a_k b_{n-k}.$$

Alors $\sum_{n\geqslant 0} c_n$ est absolument convergente, et

$$\left(\sum_{n=0}^{+\infty} a_n\right) \left(\sum_{n=0}^{+\infty} b_n\right) = \sum_{n=0}^{+\infty} c_n.$$

Les hypothèses de sommabilité et le résultat précédent sur le produit de familles sommables assurent la sommabilité de $(a_nb_m)_{(n,m)\in\mathbb{N}^2}$. Utiliser le théorème d'associativité en partitionnant par les diagonales.

V Autour de la série exponentielle

V.1 La série exponentielle

Définition 16.5.1 (série exponentielle)

La série exponentielle de paramètre $z \in \mathbb{C}$ est la série $\sum_{n \in \mathbb{N}} \frac{z^n}{n!}$

Théorème 16.5.2 (Convergence de la série exponentielle)

La série exponentielle est absolument convergente, quelle que soit la valeur de $z \in \mathbb{C}$. Sa somme définit une fonction notée momentanément

$$e(z) = \sum_{n=0}^{+\infty} \frac{z^n}{n!}.$$

Théorème 16.5.3 (Propriété remarquable de l'exponentielle)

Soit z et z' deux complexes. Alors

$$e(z + z') = e(z)e(z').$$

√ Éléments de preuve.

Calculer e(z)e(z') sous forme d'un produit de Cauchy.

Corollaire 16.5.4 (Propriété de morphisme de l'exponentielle)

e est un morphisme de $(\mathbb{C},+)$ dans (\mathbb{C}^*,\times) .

Il reste à vérifier que e est bien à valeurs dans \mathbb{C}^* . La propriété remarquable et le fait que e(0) = 1 nous assure de l'inversibilité de e(z).

V.2 Lien avec la fonction exponentielle

Théorème 16.5.5 (Développements de exp, cos, sin)

Pour tout $x \in \mathbb{R}$,

$$e^x = \sum_{n=0}^{+\infty} \frac{x^n}{n!}, \quad \cos(x) = \sum_{n=0}^{+\infty} (-1)^n \frac{x^{2n}}{(2n)!}, \quad et \quad \sin(x) = \sum_{n=0}^{+\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}$$

√ Éléments de preuve.

D'après l'ITL, en majorant le reste.

Corollaire 16.5.6

Pour tout $z \in \mathbb{C}$, $e(z) = e^z$, i.e. :

$$e^z = \sum_{n=0}^{+\infty} \frac{z^n}{n!}.$$

Le théorème précédent le donne pour les réels et pour les imaginaires pures. Terminer en utilisant la propriété remarquable de l'exponentielle.

Méthode 16.5.7 (Calcul de $\sum P(n) \frac{x^n}{n!}$)

Soit $P \in \mathbb{C}_n[X]$. Décomposer P sur la base $1, X, X(X-1), \dots, X(X-1), \dots (X-n+1)$, séparer, simplifier les termes supérieurs de la factorielle.

Exemple 16.5.8 $\sum_{k=0}^{+\infty} (n^3 + 1) \frac{2^n}{n!}$

VI Dérivée des séries géométriques

On justifie dans ce paragraphe que la série géométrique peut être dérivée terme à terme de la variable complexe z, en dérivant le monôme z^n de la même manière que pour les réels. Sachant exprimer (et dériver comme dans \mathbb{R}) la somme géométrique, ce résultat s'exprime ainsi :

Théorème 16.6.1 (Formule du binôme négatif)

Pour tout $p \in \mathbb{N}$, pour tout nombre complexe tel que |z| < 1, la série ci-dessous est absolument convergente, et

$$\sum_{n=p}^{+\infty} n(n-1)\dots(n-p+1)z^{n-p} = \frac{p!}{(1-z)^{p+1}}$$

Cette formule peut se réécrire

$$\frac{1}{(1-z)^{p+1}} = \sum_{n=p}^{+\infty} \binom{n}{p} z^{n-p} = \sum_{n=0}^{+\infty} \binom{n+p}{p} z^n.$$

Récurrence sur p, en multipliant à chaque étape par la série géométrique, à l'aide d'un produit de Cauchy.

Le cas réel se montre aussi par Taylor avec reste intégral, et s'adapte de façon plus générale au développement de $(1+x)^{\alpha}$.

Méthode 16.6.2 (Calcul de $\sum P(n)x^n$)

$$(P \in \mathbb{C}_n[X], x \in B(0,1))$$

Décomposer P sur la base $(X+1)(X+2)\dots(X+n)$, séparer, cela nous ramène à des sommes du binôme négatif.

Exemple 16.6.3
$$\sum_{k=0}^{+\infty} \frac{n^2 + n + 2}{3^n}$$
.

Intégration

On n'entend autre chose par somme des ordonnées d'un demi-cercle sinon la somme d'un nombre indéfini de rectangles faits de chaque ordonnée avec chacune des petites portions égales du diamètre, dont la somme [...] ne diffère de l'espace d'un demi-cercle que d'une quantité moindre qu'aucune donnée.

(Blaise Pascal)

Je dois payer une certaine somme; je fouille dans mes poches et j'en sors des pièces et des billets de différentes valeurs. Je les verse à mon créancier dans l'ordre où elles se présentent jusqu'à atteindre le total de ma dette. C'est l'intégrale de Riemann. Mais je peux opérer autrement. Ayant sorti tout mon argent, je réunis les billets de même valeur, les pièces semblables, et j'effectue le paiement en donnant ensemble les signes monétaires de même valeur. C'est mon intégrale.

(Henri Lebesgue)

Une autre citation, n'ayant pas beaucoup de rapport avec les intégrales, celle-là, mais faisant une référence insolite à un autre objet mathématique issu des théories de Bernhard Riemann :

Près de Shepherd's Bush, deux mille couples de Bêtas-Moins jouaient au tennis, en doubles mixtes, sur des surfaces de Riemann.

(Aldous Huxley, Le Meilleur des Mondes)

Le but de ce chapitre est de donner un fondement rigoureux à la théorie de l'intégration. Il existe plusieurs constructions de l'intégrale. Celle que nous donnons est historiquement la première complètement formalisée, et est due à Bernhard Riemann (1826-1866).

Note Historique 17.0.1

La notion d'intégration est ancienne, mais la théorie de l'intégration n'a vraiment été fondée que par Leibniz à la fin du 17-ième siècle. C'est lui qui introduit le symbolisme permettant de faire le lien entre dérivation et intégration. C'est à lui également qu'on doit le signe \int , représentant un S pour somme.

Il faut attendre toute la théorisation de la notion de fonction et des notions relatives à la continuité pour une formalisation rigoureuse. Il s'agit tout d'abord de la construction de l'intégrale de Riemann (1854), puis de l'intégrale de Lebesgue (1902). D'autres variantes existent.

Nous nous intéressons donc à l'approche de Riemann. L'idée sous-jacente à la construction est l'interprétation de l'intégrale comme l'aire sous la courbe. Cette aire est facile à déterminer pour des fonctions en escalier : il s'agit de la somme d'aires de rectangles. On commence donc par définir l'intégrale de fonctions en escalier, puis on définit plus généralement l'intégrale d'une fonction en l'approchant par des fonctions en escalier. La question qui se pose au passage est de savoir quelles sont les fonctions pour lesquelles cette

construction est possible (fonctions intégrables au sens de Riemann), donc quelles sont les fonctions qui peuvent être approchées d'assez près par des fonctions en escalier, (et au passage, quel sens donner à cette affirmation?).

On commence donc par étudier les fonctions en escalier, puis on définit leur intégrale, et on étudie leurs propriétés. Seulement après, on définit la notion d'intégrabilité au sens de Riemann, et on vérifie que les propriétés sur les fonctions en escalier se transmettent au cas général. On montre que les fonctions continues par morceaux sont intégrables au sens de Riemann, donc en particulier les fonctions continues. Enfin, on termine en reprécisant le lien entre primitive et intégrale. L'aspect pratique et calculatoire ayant déjà été vu dans un chapitre antérieur, nous nous en dispenserons ici.

I Intégrale des fonctions en escalier

Une fonction en escalier est une fonction constante par morceaux. Pour définir correctement les morceaux de l'intervalle [a, b] sur lesquels f est constante, on introduit la notion de subdivision.

I.1 Notion de subdivision d'un intervalle

Définition 17.1.1 (subdivision d'un intervalle)

• Une subdivision σ de l'intervalle [a,b] est une suite finie strictement croissante

$$\sigma = (a = \sigma_0 < \dots < \sigma_n = b).$$

- \bullet L'entier n est le nombre de parts de la subdivision.
- Les intervalles $[\sigma_i, \sigma_{i+1}], i \in [0, n-1]$ sont appelés intervalles de la subdivision.
- Le pas $p(\sigma)$ de la subdivision est la longueur du plus grand intervalle :

$$p(\sigma) = \max_{i \in [0, n-1]} (\sigma_{i+1} - \sigma_i).$$

On assimiliera souvent une subdivision σ à l'ensemble $\{\sigma_0, \ldots, \sigma_n\}$; ainsi, on s'autorisera à parler d'appartenance, d'inclusion, d'union et d'intersection de subdivisions. Quitte à réordonner les éléments, une union de subdivisions est encore une subdivision; de même pour une intersection de subdivisions. Une subdivision peut donc être vue comme un sous-ensemble fini de [a, b] contenant a et b.

Définition 17.1.2 (Relation de raffinement)

Soit σ et τ deux subdivisions de [a, b]. On dit que σ est plus fine que τ , et on note $\sigma \leqslant \tau$ si $\tau \subset \sigma$ (autrement dit, la subdivision σ est obtenue de τ en rajoutant des points)

Théorème 17.1.3 (Le raffinement définit un ordre)

La relation \leq sur les subdivisions est une relation d'ordre.

I.2 Fonctions en escalier

En vue de construire l'intégrale par approximations, en commençant par un cas simple, nous introduisons les fonctions en escalier. Nous nous contentons dans un premier temps de l'étude des fonctions d'un intervalle [a,b] à valeurs dans \mathbb{R} . Nous généraliserons plus loin les résultats obtenus pour des fonctions de [a,b] dans \mathbb{C} .

Définition 17.1.4 (Fonctions en escalier)

Une fonction $f:[a,b] \to \mathbb{R}$ est dite en escalier s'il existe une subdivision $\sigma = (\alpha = \sigma_0 < \cdots < \sigma_n = b)$ de [a,b] telle que f soit constante sur chacun des intervalles $]\sigma_i, \sigma_{i+1}[, i \in [0, n-1]]$.

Définition 17.1.5 (Subdivision associée)

Soit f une fonction en escalier. Une subdivision σ telle que dans la définition 17.1.4 est appelée subdivision associée à f.

Remarque 17.1.6

Il n'existe pas une unique subdivision associée à une fonction en escalier f. On peut toujours en trouver une infinité. En effet, toute subdivision plus fine qu'une subdivision associée à f sera encore associée à f.

Proposition 17.1.7 (Image d'une fonction en escalier)

L'image d'une fonction en escalier est un ensemble fini. En particulier, une fonction en escalier est bornée.

S'il y a n paliers, cela fait 2n + 1 valeurs possibles (n pour les paliers, n + 1 pour les points de la subdivision).

Lemme 17.1.8

Soit f une fonction en escalier de subdivision associée σ , et soit τ telle que $\tau \leqslant \sigma$. Alors τ est associée à f.

Évident!

Lemme 17.1.9

Soient f et g deux fonctions en escalier. Il existe une subdivision commune associée à f et g.

Considérer l'union d'une subdivision associée à f et d'une subdivision associée à g.

Théorème 17.1.10 (Structure de l'ensemble des fonctions en escalier)

L'ensemble $\operatorname{Esc}([a,b])$ des fonctions en escalier sur [a,b] est un sous-espace vectoriel de $\mathbb{R}^{[a,b]}$.

La stabilité par multiplication par un scalaire est évidente, la stabilité par somme découle du lemme précédent.

I.3 Intégrale d'une fonction en escalier

Dans cette section, les fonctions considérées sont à valeurs réelles.

Définition 17.1.11

Soit f une fonction en escalier, et σ une subdivision associée à f. On définit :

$$I(f,\sigma) = \sum_{i=0}^{n-1} f_i(\sigma_{i+1} - \sigma_i),$$

où, pour tout $i \in [0, n-1]$, f_i désigne la valeur constante de f sur l'intervalle σ_i , σ_{i+1} .

Remarque 17.1.12

 $I(f,\sigma)$ est la somme de l'aire signée des rectangles situés entre l'axe des abscisses et les valeurs constantes de f sur chacun des intervalles $]\sigma_i,\sigma_{i+1}[$. C'est donc l'aire entre l'axe et la courbe.

Théorème 17.1.13

Pour toutes subdivisions σ et τ associées à f, $I(f,\sigma)=I(f,\tau)$. Autrement dit, la quantité $I(f,\sigma)$ est indépendante du choix de la subdivision associée σ .

En passant par $\sigma \cup \tau$, il suffit de montrer la propriété lorsque $\sigma \subset \tau$. C'est alors évident, en groupant dans la somme définissant $I(f,\tau)$ les termes en paquets de sorte à retrouver la subdivision σ . C'est un peu fastidieux à écrire (beaucoup d'indexations), mais géométriquement très simple à comprendre.

Définition 17.1.14 (Intégrale d'une fonction en escalier)

On définit l'intégrale de la fonction en escalier f sur [a,b] comme étant la valeur commune des $I(f,\sigma)$, pour les subdivisions associées σ . On note cette quantité $\int_{[a,b]} f(x) \, \mathrm{d}x$, ou, plus souvent, $\int_a^b f(x) \, \mathrm{d}x$. Ainsi, si σ est une subdivision quelconque associée à la fonction en escalier f, on a :

$$\int_{a}^{b} f(x) dx = \sum_{i=0}^{n-1} f_i(\sigma_{i+1} - \sigma_i).$$

De la définition et d'un bon choix de subdivision découle immédiatement :

Proposition 17.1.15 (Intégrale d'une fonction nulle presque partout)

Si f est nulle sauf en un nombre fini de points, son intégrale est nulle.

C'est une fonction en escaliers de paliers tous nuls.

Terminologie 17.1.16

Lorsque f est nulle sauf en un nombre fini de points, on dira que f est nulle presque partout, ou, en abrégé, f est nulle pp. On écrira f = 0.

I.4 Propriétés des intégrales de fonctions en escalier

Nous supposons toujours les fonctions à valeurs réelles.

Proposition 17.1.17 (Additivité par rapport aux bornes – relation de Chasles)

Soit f une fonction en escalier $sur\ [a,b]$, et soit $c\in]a,b[$. Alors f est en escalier $sur\ [a,c]$ et $sur\ [c,b]$, et :

 $\int_a^b f(x) dx = \int_a^c f(x) dx + \int_c^b f(x) dx.$

√ Éléments de preuve.

Rajouter au besoin c dans la subdivision, et couper la somme en 2.

Proposition 17.1.18 (Linéarité)

 $\int_{[a,b]}$: Esc([a,b]) $\longrightarrow \mathbb{R}$ est une forme linéaire sur l'espace vectoriel Esc([a,b]). Autrement dit, pour toutes fonctions en escalier f et g, et tout réel λ , on a:

$$\int_a^b (f(x) + \lambda g(x)) dx = \int_a^b f(x) + \lambda \int_a^b g(x) dx.$$

√ Éléments de preuve.

Se ramener à la linéarité de la somme, en travaillant sur une subdivision commune à f et g.

En particulier, de la nullité de l'intégrale d'une fonction nulle presque partout, il découle :

Proposition 17.1.19 (Intégrale de deux fonctions en escalier égales presque partout)

Si deux fonctions en escalier ne diffèrent qu'en un nombre fini de points, alors leurs intégrales sont égales.

 $f - g =_{pp} 0$ puis linéarité.

Proposition 17.1.20 (Positivité, ou croissance, de l'intégrale)

Soit f et g deux fonctions en escalier sur [a,b] telles que pour tout $x \in [a,b]$, $f(x) \leq g(x)$. Alors:

$$\int_a^b f(x) \, \mathrm{d}x \leqslant \int_a^b g(x) \, \mathrm{d}x.$$

En particulier, si f est en escalier sur [a,b] et positive, $\int_a^b f(x) dx \ge 0$.

Commencer par le cas $f \ge 0$: les f_i sont positifs, donc l'intégrale aussi. Reste vrai si la positivité n'est vérifiée que pp (les points de non positivité sont des points de la subdivision)

Cas
$$f \leq g$$
 en étudiant $g - f$.

 \triangleright

Proposition 17.1.21 (Inégalité triangulaire intégrale)

Soit f une fonction en escalier sur [a,b], à valeurs réelles. Alors |f| est en escalier sur [a,b], et :

$$\left| \int_{a}^{b} f(x) \, dx \right| \leqslant \int_{a}^{b} |f(x)| \, dx.$$

 σ adapté à f est aussi adapté à |f|. On est alors ramené à l'IT pour les sommes.

Définition 17.1.22 (extension de la notation intégrale)

Par convention on pose $\int_a^a f(x) dx = 0$, et, si a < b, $\int_b^{\bar{a}} f(x) dx = -\int_a^b f(x) dx$.

Alors, la relation de Chasles est vraie pour toute valeur de c, qu'elle soit ou non dans]a,b[, à condition que la fonction soit en escalier sur tous les intervalles considérés.

II Construction de l'intégrale de Riemann

L'idée de la construction est d'encadrer une fonction donnée le plus finement possible par des fonctions en escalier, dans l'espoir de définir l'intégrale par ces approximations. Dans un premier temps, on reste dans le cadre de fonctions à valeurs dans \mathbb{R} .

II.1 Fonctions intégrables

Dans toute cette section, f désigne une fonction de [a,b] dans \mathbb{R} .

Notation 17.2.1

On définit :

- 1. $Esc_{-}(f) = \{g \in Esc([a, b]) \mid \forall x \in [a, b], g(x) \leq f(x)\}$
- 2. $\operatorname{Esc}_{+}(f) = \{ g \in \operatorname{Esc}([a, b]) \mid \forall x \in [a, b], \ g(x) \ge f(x) \}$

Ainsi, $\operatorname{Esc}_{-}(f)$ est l'ensemble des fonctions en escalier minorant f et $\operatorname{Esc}_{+}(f)$ est l'ensemble des fonctions en escalier majorant f.

Remarquez que $\operatorname{Esc}_{-}(f)$ et $\operatorname{Esc}_{+}(f)$ peuvent être vide, par exemple si f n'est pas bornée.

Définition 17.2.2 (Intégrabilité au sens de Riemann)

On dit que f est intégrable (au sens de Riemann) sur [a, b] si :

$$\forall \varepsilon > 0, \ \exists g \in \operatorname{Esc}_{-}(f), \ \exists h \in \operatorname{Esc}_{+}(f), \ \int_{a}^{b} (h(x) - g(x)) \, \mathrm{d}x < \varepsilon.$$

Remarquez que cette intégrale est forcément positive.

Proposition 17.2.3 (CN d'intégrabilité)

Pour que f soit intégrable sur [a, b], il est nécessaire que f soit bornée.

$$\dots$$
car g et h le sont.

On définit :

$$A_{-}(f) = \left\{ \int_{a}^{b} g(x) \, \mathrm{d}x \mid g \in \mathrm{Esc}_{-}(f) \right\}, \qquad \text{et} \qquad A_{+}(f) = \left\{ \int_{a}^{b} g(x) \, \mathrm{d}x \mid g \in \mathrm{Esc}_{+}(f) \right\}.$$

On note, sous réserve d'existence :

$$I_{-}(f) = \sup A_{-}(f)$$
 et $I_{+}(f) = \inf A_{+}(f)$.

Théorème 17.2.4

f est intégrable si et seulement si $I_{-}(f)$ et $I_{+}(f)$ existent, et si $I_{-}(f) = I_{+}(f)$.

- - Sens direct : L'existence de $I_+(f)$ et $I_-(f)$ provient de la propriété fondamentale de \mathbb{R} (bien vérifier toutes ses hypothèses). L'inégalité $g \leq h$ toujours vérifiée avec g et h comme dans l'énoncé montre que $I_-(f) \leq I_+(f)$. La propriété d'intégrabilité montre que pour tout $\varepsilon > 0$, $I_+(f) I_-(f) < 2\varepsilon$. On en déduit $I_+(f) \leq I_-(f)$.
 - Réciproque par caractérisation des bornes supérieure et inférieure, en se laissant un $\frac{\varepsilon}{2}$ de part et d'autre de $I_+(f) = I_-(f)$.

\triangleright

Définition 17.2.5 (Intégrale de Riemann)

Si f est intégrable, on définit son intégrale comme étant la valeur commune de $I_+(f)$ et $I_-(f)$:

$$\int_{a}^{b} f(x) \, dx = I_{-}(f) = I_{+}(f).$$

Proposition 17.2.6 (Critère d'intégrabilité)

Une fonction f définie sur [a,b] est intégrable si et seulement si pour tout $\varepsilon > 0$, il existe deux fonctions en escalier φ et θ telles que

$$\forall x \in [a, b], \quad \varphi(x) - \theta(x) \leqslant f(x) \leqslant \varphi(x) + \theta(x),$$

et $\int_{a}^{b} \theta(x) dx \leq \varepsilon$. Dans ce cas, on obtient :

$$\left| \int_{a}^{b} f(x) \, dx - \int_{a}^{b} \varphi(x) \, dx \right| \leqslant \varepsilon.$$

Dans un sens, poser $\varphi = \frac{g+h}{2}$ et $\theta = \frac{h-g}{2}$. Dans l'autre, pose $g = \varphi - \theta$ et $h = \varphi + \theta$.

Proposition 17.2.7 (Critère séquentiel d'intégrabilité)

Une fonction f définie sur [a,b] est intégrable si et seulement s'il existe deux suites de fonctions en escalier (φ_n) et (θ_n) telles que

$$\forall x \in [a, b], |f(x) - \varphi_n(x)| \le \theta_n(x),$$

et
$$\int_a^b \theta_n(x) \ \mathrm{d}x \longrightarrow 0$$
. Dans ce cas, $\int_a^b \varphi_n(x) \ \mathrm{d}x$ admet une limite et

$$\int_a^b \varphi_n(x) \, dx \longrightarrow \int_a^b f(x) \, dx.$$

- - Prendre ε_n de plus en plus petit dans le critère précédent.
 - Réciproquement, prendre n suffisamment grand pour que l'intégrale de θ_n soit inférieure à ε pour se ramener au critère précédent.

Intuitivement, l'intégrale d'une fonction f représente donc l'aire sous la courbe, obtenue par approximation. Cette aire sous la courbe peut être vue comme l'aire d'un rectangle de base [a, b], de hauteur égale à la valeur moyenne de f sur [a, b]. Cela motive la définition suivante :

Définition 17.2.8 (Moyenne de f)

Soit f une fonction intégrable sur [a, b]. La moyenne de f sur [a, b]. est la quantité définie par l'intégrale

$$\frac{1}{b-a} \int_a^b f(x) \, \mathrm{d}x.$$

Le théorème des sommes de Riemann que nous verrons un peu plus loin précise cette notion de moyenne : il s'agit en fait d'une limite de la moyenne des valeurs prises par f en n points régulièrement répartis sur [a,b], limite prise lorsque le nombre de points n tend vers $+\infty$.

II.2 Exemples importants de fonctions intégrables

Voici une classe importante de fonctions intégrables :

Théorème 17.2.9 (Intégrabilité des fonctions monotones)

Soit f une fonction monotone sur [a, b]. Alors f est intégrable sur [a, b].

Encadrer f entre deux fonctions en escalier sur des subdivisions régulières de plus en plus fines (en prenant la valeur à gauche et à droite de f sur chaque intervalle).

Des arguments un peu plus fins, nécessitant l'utilisation du théorème de Heine (donc de la compacité), amène l'intégrabilité de cette seconde classe de fonctions :

Théorème 17.2.10 (Intégrabilité des fonctions continues)

Soit f continue sur [a, b]. Alors f est intégrable sur [a, b].

Encadrer de même f sur chaque part de la subdivision régulière, en remarquant que l'amplitude de cet encadrement peut être contrôlé grâce à la continuité uniforme de f.

Nous verrons un peu plus loin que cela reste vrai pour les fonctions continues par morceaux. Mais auparavant, nous devons établir un certain nombre de propriétés de l'intégrale de Riemann.

Avant de quitter cette section, nous donnons un exemple de fonction bornée mais non intégrable :

Exemple 17.2.11

Soit $f:[0,1]\to\mathbb{R}$ définie pour tout $x\in[0,1]$ par f(x)=0 si $x\in\mathbb{Q}$ et f(x)=1 si $x\in\mathbb{R}\setminus\mathbb{Q}$. Alors f est bornée, mais n'est pas intégrable. Plus précisément, $I_-(f)=0$ et $I_+(f)=1$.

II.3 Propriétés de l'intégrale

Proposition 17.2.12 (Additivité par rapport aux bornes – relation de Chasles)

Soit f une fonction définie $sur\ [a,b]$ et $c\in]a,b[$. Alors f est intégrable $sur\ [a,b]$ si et seulement si f est intégrable $sur\ [a,c]$ et $sur\ [c,b]$, et dans ce cas :

$$\int_a^b f(x) \, \mathrm{d}x = \int_a^c f(x) \, \mathrm{d}x + \int_c^b f(x) \, \mathrm{d}x.$$

Par critère séquentiel.

Proposition 17.2.13 (Structure de l'ensemble des fonctions intégrables)

L'ensemble Int([a,b]) des fonctions intégrables sur [a,b] est un espace vectoriel sur \mathbb{R} .

Proposition 17.2.14 (Linéarité de l'intégrale)

L'intégrale $\int_{[a,b]} : \operatorname{Int}([a,b]) \longrightarrow \mathbb{R}$ est une forme linéaire sur l'espace vectoriel $\operatorname{Int}([a,b])$. Autrement dit, pour toutes fonctions intégrables f et g, et tout réel λ , on a:

$$\int_a^b (f(x) + \lambda g(x)) \, dx = \int_a^b f(x) + \lambda \int_a^b g(x) \, dx.$$

Les deux propriétés sont indissociables. Il s'agit de montrer la stabilité par CL, ce qui est facile par critère séquentiel. La linéarité de l'intégrale en découle par bonus.

Corollaire 17.2.15

 $Si\ f\ et\ g\ sont\ égales\ presque\ partout,\ alors\ f\ est\ intégrable\ si\ et\ seulement\ si\ g\ l'est,\ et\ dans\ ce\ cas,\ leurs\ intégrales\ sont\ égales.$

Proposition 17.2.16 (Croissance et positivité de l'intégrale)

Soit f et q deux fonctions intégrables sur [a,b] telles que pour tout $x \in [a,b]$, $f(x) \leq g(x)$. Alors:

$$\int_{a}^{b} f(x) \, \mathrm{d}x \leqslant \int_{a}^{b} g(x) \, \mathrm{d}x.$$

En particulier, si f est intégrable sur [a,b] et positive, $\int_a^b f(x) dx \ge 0$.

Comme plus haut, il suffit d'établir le cas $f \ge 0$. N'y aurait-il pas une fonction en escalier très simple dans $\operatorname{Esc}_-(f)$ donnant le résultat de façon immédiate?

Corollaire 17.2.17 (Inégalité de la moyenne)

Soit f une fonction intégrable sur [a,b] telle que $m \leq f \leq M$. Alors :

$$m \leqslant \frac{1}{b-a} \int_a^b f(x) \, \mathrm{d}x \leqslant M.$$

Proposition 17.2.18 (Inégalité triangulaire intégrale)

Soit f une fonction intégrable sur [a,b]. Alors |f| est intégrable sur [a,b], et :

$$\left| \int_{a}^{b} f(x) \, dx \right| \leqslant \int_{a}^{b} |f(x)| \, dx.$$

Encore par critère séquentiel.

Avertissement 17.2.19

Il est important dans cette inégalité de bien respecter l'ordre des bornes : l'inégalité triangulaire n'est valable que lorsque a < b.

Proposition 17.2.20 (Intégrabilité d'un produit)

Soit f et g deux fonctions intégrables sur [a,b]. Alors le produit fg est intégrable sur [a,b].

Par critère séquentiel, avec φ_n , θ_n associés à f et φ'_n et θ'_n associés à g. Montrer qu'on peut supposer $\varphi'_n \leq 2M'$, où M' est un majorant de g (sinon, remplacer les valeurs posant problème par 0, sans changer θ) Décomposer alors en $fg - f\varphi'_n + f\varphi'_n - \varphi_n\varphi'_n$.

II.4 Intégrales des fonctions continues par morceaux

Définition 17.2.21 (Fonctions continues par morceaux sur un segment)

Soit f une fonction définie sur un segment [a, b]. On dit que f est continue par morceaux sur [a, b] s'il existe une subdivision $a = \sigma_0 < \cdots < \sigma_n = b$ de [a, b] telle que f soit continue sur tous les intervalles ouverts $]\sigma_i, \sigma_{i+1}[$ $(i \in [0, n-1])$, et admette des limites finies à droite en $\sigma_0 = a$, à droite et à gauche (pas nécessairement égales) en $\sigma_1, \ldots, \sigma_{n-1}$ et à gauche en $\sigma_n = b$.

On définit plus généralement la notion de fonction continue par morceaux sur un intervalle quelconque, même si nous n'aurons pas à nous servir de cette notion dans l'immédiat.

Définition 17.2.22 (Fonction continue par morceaux sur un intervalle)

Une fonction f définie sur un intervalle I est continue par morceaux sur cet intervalle si elle est continue par morceaux sur tout segment inclus dans l'intervalle I.

Théorème 17.2.23 (Intégrabilité des fonctions continues par morceaux)

Toute fonction continue par morceaux sur le segment [a, b] est intégrable.

d Éléments de preuve.

Recoller les morceaux avec Chasles.

II.5 Sommes de Riemann

Théorème 17.2.24 (Sommes de Riemann)

Soit f une fonction continue sur [a, b]. Alors :

$$\int_{a}^{b} f(x) \, \mathrm{d}x = \lim_{n \to +\infty} \frac{b-a}{n} \sum_{k=0}^{n-1} f\left(a + k \frac{b-a}{n}\right) = \lim_{n \to +\infty} \frac{b-a}{n} \sum_{k=1}^{n} f\left(a + k \frac{b-a}{n}\right).$$

Plus généralement, soit pour tout $n \in \mathbb{N}$, $\sigma^n = (\sigma_{n,k})_{k \in [\![0,\ell_n]\!]}$ une subdivision, et supposons que $p(\sigma^n) \to 0$ et soit pour tout $n \in \mathbb{N}$ et tout $k \in [\![0,\ell_n-1]\!]$, $x_{n,k}$ un élément de $[\![\sigma_{n,k},\sigma_{n,k+1}]\!]$. Alors

$$\int_{a}^{b} f(x) dx = \lim_{n \to +\infty} \sum_{k=0}^{\ell_{n}-1} (\sigma_{n,k+1} - \sigma_{n,k}) f(x_{n,k}).$$

Par continuité uniforme si le pas est suffisamment petit $f(x_{n,k})$ est une $\frac{\varepsilon}{b-a}$ -approximation de f(x) sur tout l'intervalle $[\sigma_{n,k},\sigma_{n+1,k}]$, donc la somme diffère de l'intégrale de moins de ε .

On utilise souvent ce théorème sur l'intervalle [0,1], avec la subdivision régulière. Cela s'écrit alors :

$$\int_0^1 f(x) \, \mathrm{d}x = \lim_{n \to +\infty} \frac{1}{n} \sum_{k=0}^{n-1} f\left(\frac{k}{n}\right) = \lim_{n \to +\infty} \frac{1}{n} \sum_{k=1}^n f\left(\frac{k}{n}\right).$$

Seul le cas d'une fonction f continue est au programme, cas dans lequel la démonstration se simplifie notablement, en utilisant la continuité uniforme de f, mais le théorème reste vrai pour toute fonction intégrable.

II.6 Extension des résultats aux fonctions à valeurs dans $\mathbb C$

Étant donnée une fonction $f:[a,b] \longrightarrow \mathbb{C}$, on peut décomposer f en $f=f_1+\mathrm{i}\, f_2$, où f_1 et f_2 sont à valeurs réelles. On définit alors :

Définition 17.2.25 (Intégrale d'une fonction à valeurs complexes)

Soit $f = f_1 + i f_2$. On dit que la fonction f est intégrable si et seulement si f_1 et f_2 le sont, et dans ce cas,

$$\int_{a}^{b} f(t) dt = \int_{a}^{b} f_{1}(t) dt + i \int_{a}^{b} f_{2}(t) dt.$$

On montre sans difficulté que l'ensemble des fonctions intégrables de [a,b] dans $\mathbb C$ est un espace vectoriel, et que l'intégrale est une forme linéaire. On vérifie également sans peine la relation de Chasles, ainsi que l'intégrabilité d'un produit de fonctions intégrables, en exprimant sa partie réelle et sa partie imaginaire à l'aide des parties réelles et iméginaires des deux fonctions initiales.

Par ailleurs, une fonction à valeurs dans $\mathbb C$ étant continue si et seulement sa partie réelle et sa partie imaginaire le sont, on récupère également de la sorte l'intégrabilité des fonctions continues par morceaux à valeurs dans $\mathbb C$.

Le seul résultat qu'il ne soit pas complètement immédiat de généraliser est l'inégalité triangulaire, qu'on peut déduire du cas réel par un argument de rotation :

Théorème 17.2.26 (Inégalité triangulaire intégrale dans \mathbb{C})

Soit $f:[a,b] \longrightarrow \mathbb{C}$ intégrable. Alors |f| est aussi intégrable, et

$$\left| \int_{a}^{b} f(t) \, dt \right| \leqslant \int_{a}^{b} |f(t)| \, dt.$$

En notant $\int_a^b f(t) dt = r e^{i\theta}$, et en remplaçant f par $e^{-i\theta}f$, on peut se ramener au cas où $\int_a^b f(t) dt > 0$. En particulier, cette intégrale est alors égale à $\int_a^b f_r(t) dt$ et la majoration relève alors de l'IT pour des fonctions réelles.

III Primitives et intégration

Nous renvoyons au chapitre 10 pour les résultats suivants :

Théorème 17.3.1 (Expression intégrale d'une primitive)

Soit I un intervalle et $f: I \to \mathbb{R}$ une fonction continue sur \mathbb{R} . Alors f admet une primitive sur I. De plus, soit $x_0 \in I$ et $y_0 \in \mathbb{R}$. L'unique primitive F de f telle que $F(x_0) = y_0$ est :

$$\forall x \in I, \quad F(x) = y_0 + \int_{x_0}^x f(t) \, dt.$$

En particulier, l'unique primitive F telle que $F(x_0) = 0$ est :

$$\forall x \in I, \quad F(x) = \int_{x_0}^x f(t) \, dt.$$

Corollaire 17.3.2 (Théorème fondamental du calcul des intégrales)

Soit f continue sur [a,b]. Soit F une primitive de f. Alors :

$$\int_{a}^{b} f(t) dt = F(b) - F(a).$$

Nous renvoyons également au chapitre 10 pour le tableau récapitulatif des primitives à connaître impérativement sur le bout des doigts, ainsi que pour tous les théorèmes essentiels issus du théorème fondamental, en particulier :

- Dérivation d'une intégrale dépendant de ses bornes
- Intégration par parties
- Changement de variable

Fonctions de plusieurs variables

Le but de ce chapitre est d'introduire les techniques liées à l'étude des fonctions de plusieurs variables réelles. Conformément au programme, nous énonçons en général les définitions et propriétés dans le contexte de fonctions de 2 variables (essentiellement dans un souci de clarté, afin de limiter la lourdeur des notations), à valeurs réelles mais l'essentiel de ce que nous énonçons se généralise sans problème à un nombre fini quelconque de variables, sans autre difficulté.

Le point de vue adopté pour la dérivation est celui des dérivées partielles. La notion de différentielle, plus intéressante pour des aspects théoriques, sera vue l'année prochaine.

I Limites et continuité d'une fonction de n variables réelles

Dans cette partie, nous faisons une entorse à notre introductionn, en étudiant des fonctions définies sur un domaine D de \mathbb{R}^n , et à valeurs dans \mathbb{R}^m , n et m étant deux entiers strictement positifs.

I.1 Limites d'une fonction de n variables

Nous commençons par quelques rappels métriques et topologiques.

 $\bullet\,$ Nous définissons la distance euclidenne sur \mathbb{R}^n par

$$d(X,Y) = ||Y - X||,$$

où ||.|| est la norme euclidienne canonique. Ainsi,

$$d\left(\begin{pmatrix} x_1 \\ \vdots \\ x_x \end{pmatrix}, \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}\right) = \sqrt{\sum_{k=1}^n (y_k - x_k)^2}.$$

 \bullet Comme dans le cas de \mathbb{R} , on définit les boules

$$B(X_0, r) = \{X \in \mathbb{R}^n \mid d(X, X_0) < r\}$$
 et $\overline{B}(X_0, r) = \{X \in \mathbb{R}^n \mid d(X, X_0) \leqslant r\}.$

- Un voisinage V de X_0 est un sous-ensemble de \mathbb{R}^n tel qu'il existe $\varepsilon > 0$ tel que $B(X_0, \varepsilon) \subset V$. On note $\mathcal{V}(X_0)$ l'ensemble de tous les voisinages de X_0 .
- Un ouvert est un ensemble qui est voisinage de tous ses points.
- Un point X_0 est adhérent à un sous-ensemble A de \mathbb{R}^n si pour tout $\varepsilon > 0$, $B(X_0, \varepsilon) \cap A \neq \emptyset$.

On définit alors la notion de limite d'une fonction de n variables, à valeurs dans \mathbb{R}^m :

Définition 18.1.1 (Limite, point de vue métrique)

Soit f une application définie sur un domaine D de \mathbb{R}^n , à valeurs dans \mathbb{R}^m , et X_0 un point adhérent au domaine. On dit que f admet une limite $L \in \mathbb{R}^m$ au point X_0 si et seulement si :

$$\forall \varepsilon > 0, \ \exists \eta > 0, \ \forall X \in D, \ \|X - X_0\| \leqslant \eta \Longrightarrow \|F(X) - L\| \leqslant \varepsilon.$$

Remarquez que les deux normes utilisées ne sont pas les mêmes, l'une étant définie sur \mathbb{R}^n , l'autre sur \mathbb{R}^m .

Proposition 18.1.2 (Limite, caractérisation topologique)

Soit f une application définie sur un domaine D de \mathbb{R}^n , et X_0 un point adhérent au domaine. Alors f admet la limite L au point X_0 si et seulement si :

$$\forall W \in \mathcal{V}(L), \exists V \in \mathcal{V}(X_0), f(V) \subset W.$$

De même que dans le cas réel.

Remarque 18.1.3

Comme dans le cas de fonctions métriques, on peut aussi avoir des caractérisations mixtes, en gardant le point de vue métrique au départ ou à l'arrivée.

Proposition 18.1.4 (Caractérisation par les coordonnées)

Si $f = (f_1, \ldots, f_m)$, i.e. pour tout $X \in D$,

$$f(X) = (f_1(X), \dots, f_m(X)),$$

où les f_i sont des fonctions de la variable $X \in \mathbb{R}^n$ (donc de n variables réelles), à valeurs dans \mathbb{R} , alors

$$f$$
 admet une limite $L = \begin{pmatrix} \ell_1 \\ \vdots \\ \ell_m \end{pmatrix} \in \mathbb{R}^m$ si et seulement si

$$\forall i \in [1, m], \quad \lim_{X \to X_0} f_i(X) = \ell_i.$$

Remarquer que par IT

$$|f_i(X) - \ell_i| \le ||f(X) - L|| \le |f_1(X) - \ell_1| + \dots + |f_m(X) - \ell_m|.$$

Méthode 18.1.5

Pour montrer que f admet une limite L en X_0 , on essayera de majorer ||f(X) - L|| en fonction de $||X - X_0||$

Exemple 18.1.6

Déterminer la limite en $\begin{pmatrix} 0 \\ 0 \end{pmatrix}$ de $f:(x,y) \mapsto \frac{x^2}{|x|+|y|}$.

I.2 Continuité

Définition 18.1.7 (Continuité)

Soit f une fonction définie sur un sous-ensemble D de \mathbb{R}^n , à valeurs dans \mathbb{R}^m , et soit et $X_0 \in D$. On dit que f est continue en X_0 si l'une des propriétés équivalentes suivantes est vérifiée :

- (i) $\forall \varepsilon > 0$, $\exists \eta$, $\forall X \in D$, $\|X X_0\| \leqslant \eta \Longrightarrow \|f(X) f(X_0)\| \leqslant \varepsilon$.
- (ii) $\forall V \in \mathcal{V}(f(X_0)), \exists U \in \mathcal{V}(X_0), f(U) \subset V.$

Seul le cas de deux variables est au programme de première année.

Dans le cas de fonctions à valeurs réelles, les règles usuelles (somme, produit, quotient de fonctions continues) restent valides dans ce cadre (avec des preuves similaires). On donne deux propriétés de composition (à la source et à l'arrivée). Ces propriétés sont des cas particuliers de propriétés plus générales.

Proposition 18.1.8 (Continuité d'une composée)

Soit X et Y deux sous-ensembles de \mathbb{R} , D un sous-ensemble de \mathbb{R}^2 . On se donne $f: D \to Y$, $\varphi_1, \varphi_2: X \to \mathbb{R}$ et $g: Y \to \mathbb{R}$, telles que pour tout $x \in X$, $(\varphi_1(x), \varphi_2(x) \in D$.

- 1. Si f est continue en (x_0, y_0) et g continue en $f(x_0, y_0)$, alors $(x, y) \mapsto g(f(x, y))$ est continue en (x_0, y_0) .
- 2. Si φ_1 et φ_2 sont continues en t_0 et f est continue en $(\varphi_1(t_0), \varphi_2(t_0))$, alors $t \mapsto f(\varphi_1(t), \varphi_2(t))$ est continue en t_0

Corollaire 18.1.9

- 1. La projection $(x,y) \mapsto x$ est continue sur \mathbb{R}^2 .
- 2. Soit $U \subset \mathbb{R}$, et $f: U \to \mathbb{R}$ une fonction d'une variable réelle continue sur U. Alors la fonction $(x,y) \mapsto f(x)$ est continue sur $U \times \mathbb{R}$.

Exemples 18.1.10

- 1. $(x,y) \mapsto \sin(y + \cos(xy))$ est continue sur \mathbb{R}^2
- 2. Le deuxième point de la proposition est très utile pour justifier la non continuité, en restreignant f le long d'une courbe. Soit par exemple :

$$f:(x,y)\mapsto \frac{xy}{x+y}$$
 si $(x,y)\neq (0,0)$ et $f(0,0)=0$.

Montrer que f n'est pas continue en 0.

Le graphe d'une fonction de 2 variables à valeurs dans \mathbb{R} est une surface (une nappe)

II Rudiments de calcul différentiel

Ce paragraphe a pour but de donner les principes de base du calcul différentiel pour les fonctions de plusieurs variables, en vue d'utilisations en physique.

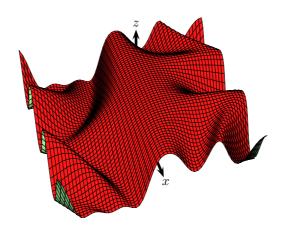


FIGURE 18.1 – Graphe de $(x, y) \mapsto \sin(y + \cos(xy))$

II.1 Dérivées partielles

Soit U un ouvert de \mathbb{R}^2 , et f une fonction définie sur U. Soit $X_0 = (x_0, y_0)$ un point de U. On note

$$I_{1,X_0} = \{x \in \mathbb{R} \mid (x,y_0) \in U\}$$
 et $I_{2,X_0} = \{x \in \mathbb{R} \mid (x_0,y) \in U\}.$

Du fait que U est ouvert, I_{1,X_0} est un voisinage de x_0 et I_{2,X_0} est un voisinage de y_0 .

Définition 18.2.1 (Applications partielles)

Les deux applications partielles de f en $X_0 = (x_0, y_0)$ sont les deux applications f_{1,X_0} et f_{2,X_0} définies sur I_{1,X_0} et sur I_{2,X_0} respectivement par :

$$f_{1,X_0}(x) = f(x,y_0)$$
 et $f_{2,X_0}(y) = f(x_0,y)$.

Les applications f_1 et f_2 ne dépendent donc plus que d'une variable (soit x, soit y), l'autre ayant été fixée. Elles peuvent être vues comme des restrictions de f aux deux droites de \mathbb{R}^2 parallèles aux axes et passant par (x_0, y_0) .

Définition 18.2.2 (Dérivées partielles)

Avec les notations précédentes, on dit que f admet une dérivée partielle par rapport à x en X_0 si f_1 est dérivable en x_0 , et on note alors

$$\frac{\partial f}{\partial x}(X_0) = f'_{1,X_0}(x_0).$$

De même, en cas d'existence, on note :

$$\frac{\partial f}{\partial y}(X_0) = f'_{2,X_0}(y_0).$$

Remarque 18.2.3

En physique, la même notation, mais avec des d « droits », est déjà utilisée pour les dérivées de fonctions d'une variable. Les notations usuelles imposent d'employer un ∂ (d « rond ») pour les dérivées partielles.

Ainsi, sous réserve d'existence de ces limites,

$$\frac{\partial f}{\partial x}(X_0) = \lim_{x \to x_0} \frac{f(x, y_0) - f(x_0, y_0)}{x - x_0} \quad \text{et} \quad \frac{\partial f}{\partial y}(X_0) = \lim_{y \to y_0} \frac{f(x_0, y) - f(x_0, y_0)}{y - y_0}.$$

Remarque 18.2.4

L'existence des deux dérivées partielles en un point X_0 n'assure pas la continuité en X_0

Exemple 18.2.5

Soit f la fonction indicatrice de l'union des deux axes. Les dérivées partielles en (0,0) existent, mais f n'est clairement pas continue en (0,0).

Remarque 18.2.6

Le fait même de se restreindre à une droite sur laquelle y est fixé égal à y_0 pour définir $\frac{\partial f}{\partial x}(X_0)$ nous assure qu'en pratique, la dérivée partielle $\frac{\partial f}{\partial x}$ peut se calculer en tout point en utilisant les mêmes règles de dérivation que pour les fonctions d'une variable, mais en considérant y comme une constante (donc de dérivée nulle). De même $\frac{\partial f}{\partial y}$ se calcule en dérivant par rapport à la variable y avec les règles usuelles, en considérant que x est une constante.

Exemple 18.2.7

Dérivées partielles de f définie sur \mathbb{R}^2 par

$$f(x,y) = e^{x\cos(xy)}$$
.

Définition 18.2.8 (Fonction de classe \mathcal{C}^1 sur un ouvert de \mathbb{R}^2)

Soit U un ouvert de \mathbb{R}^2 , et $f:U\to\mathbb{R}$. On dit que f est de classe \mathcal{C}^1 si f admet des dérivées partielles $\frac{\partial f}{\partial x}$ et $\frac{\partial f}{\partial y}$ en tout point de U, et que les applications

$$X \mapsto \frac{\partial f}{\partial x}(X)$$
 et $X \mapsto \frac{\partial f}{\partial y}(X)$

sont continues sur U.

Proposition 18.2.9 (Règles gérérales sur les fonctions C^1)

- 1. Une somme, une combinaison linéaire, un produit, un quotient défini de fonctions de classe C^1 sur un ouvert U de \mathbb{R}^2 sont de classe C^1 .
- 2. Soit $f: U \to Y$ une application de classe C^1 d'un ouvert U de \mathbb{R}^2 à valeurs dans $Y \subset \mathbb{R}$, et $g: Y \to \mathbb{R}$ de classe C^1 . Alors $g \circ f$ est de classe C^1 .

Exprimer les dérivées partielles.

On introduit un outil très pratique pour écrire de façon synthétique certaines formules, et largement utilisé en physique :

Définition 18.2.10 (Gradient)

Soit f une fonction de classe \mathcal{C}^1 sur un ouvert U de \mathbb{R}^2 . Le gradient de f est défini sur U par :

$$\forall X \in U, \quad \nabla f(X) = \begin{pmatrix} \frac{\partial f}{\partial x}(X) \\ \frac{\partial f}{\partial y}(X) \end{pmatrix}.$$

Le symbole ∇ se lit « nabla ».

II.2 Développements limités des fonctions de deux variables

Définition 18.2.11 (DL d'une fonction de deux variables)

Un développement limité à l'ordre n d'une fonction f définie au voisinage de X_0 est une approximation polynomiale

$$f(X_0 + H) = P(h, k) + o(||H||^n),$$

où H = (h, k), et P est un polynôme des deux variables h et k, de degré total inférieur ou égal à n (le degré total d'un monôme $h^i k^j$ étant i + j).

La norme considérée ||H|| est ici la norme euclidienne de H. N'importe quelle autre norme définie sur \mathbb{R}^2 ferait l'affaire, d'après un résultat que vous verrez l'année prochaine (équivalence des normes en dimension finie).

Le seul cas au programme est le cas des DL à l'ordre 1 :

$$f(X_0 + H) = c + ah + bk + o(||H||).$$

Méthode 18.2.12

On obtient les DL de fonctions de deux variables x et y en se ramenant à des DL de fonctions d'une seule variable, x, ou y, ou une nouvelle variable définie en fonction de x et y. Il faut ensuite bien gérer le o, en remarquant qu'avec les notations précédentes,

$$|h| \leqslant ||H||$$
 et $|k| \leqslant ||H||$.

En particulier, un o(h) est aussi un $o(\|H\|)$. De même pour un o(k), mais aussi par exemple pour un o(h+k).

Exemples 18.2.13

- 1. DL à l'ordre 1 en (0,0) de $\mathrm{e}^{\cos(x+2y)}(1+x+xy)$
- 2. DL à l'ordre 2 en (0,0) de $e^{x+\ln(2+y)}$.

Remarque 18.2.14 (Plan tangent)

Le DL à l'ordre 1 définit l'équation d'un plan, qui correspond à la meilleure approximation affine locale. Ainsi, cela définit le plan tangent à la courbe au point X_0 .

Exemple 18.2.15

Déterminer le plan tangent à $(x,y) \mapsto e^{x-\sqrt{y}}$ au point (1,1).

Théorème 18.2.16 (Unicité du DL à l'ordre 1)

Soit f une fonction de deux variables définie au voisinage de X_0 . Si f admet un DL à l'ordre 1 en X_0 :

- 1. ce DL est unique;
- 2. f admet alors des dérivées partielles par rapport à x et y en $X_0 = (x_0, y_0)$

3. Le DL est alors donné par :

$$f(x,y) = f(X_0) + (x - x_0) \frac{\partial f}{\partial x}(X_0) + (y - y_0) \frac{\partial f}{\partial y}(X_0).$$

- - Tronquer le DL à l'ordre 0 pour comparer la partie constante à la valeur en $f(X_0)$.
 - Écrire le DL pour $X = X_0 + te_i$, i = 1 ou 2, et se ramener à l'unicité des DL_1 pour les fonctions d'une variable, et leur expression en terme de dérivée.

 \triangleright

Théorème 18.2.17 (Existence du DL à l'ordre 1, Taylor-Young)

Soit f de classe C^1 au voisinage de X_0 , alors f admet un DL à l'ordre 1 au voisinage de X_0 , décrit comme dans le théorème précédent, ce qui se réécrit également :

$$f(X) = f(X_0) + \langle X - X_0, \nabla f(X_0) \rangle + o(\|X - X_0\|).$$

Utiliser la formule de TY pour une variable, successivement pour la première variable, puis la deuxième, puis utiliser la continuité d'une des deux dérivées partielles.

II.3 Dérivation partielle de composées

Les DL permettent d'obtenir la règle de dérivation composée ci-dessus, incontournable, notamment en physique.

Théorème 18.2.18 (Règle de la chaîne)

Soit f une fonction de classe C^1 sur un ouvert U de \mathbb{R}^2 et $x,y:I\to\mathbb{R}$ deux applications de classe C^1 sur un intervalle ouvert I de \mathbb{R} . On note $\gamma(t)=(x(t),y(t))$, et on suppose que $\gamma(I)\subset U$. Alors la fonction $t\mapsto f(\gamma(t))$ est de classe C^1 sur I, et

$$\frac{\mathrm{d}}{\mathrm{d}t}(f(x(t),y(t))) = x'(t) \cdot \frac{\partial f}{\partial x}(x(t),y(t)) + y'(t) \cdot \frac{\partial f}{\partial y}(x(t),y(t)) = \Big\langle \gamma'(t), \nabla f(\gamma(t)) \Big\rangle,$$

où la dérivée γ' est calculée coordonnées par coordonnées, et $\langle .,. \rangle$ désigne le produit scalaire usuel de \mathbb{R}^2 .

Calculer le DL à l'ordre 1, en se servant de TY pour f au point $(x(t_0), y(t_0))$, appliqué en (x(t), y(t)), puis en développant x(t) et y(t) par TY pour les fonctions d'une variable (ou dans l'autre sens). Utiliser le théorème d'unicité pour conclure.

Remarque 18.2.19 (Dérivée de long d'un chemin)

La fonction γ peut être vue comme un chemin dans \mathbb{R}^2 , paramétré par t, parcouru à une certaine vitesse donnée par l'évolution de x(t) et y(t) au fil du temps. C'est ce qu'on appelle un arc paramétré. Ainsi, la règle de la chaîne peut être interprétée comme une dérivée le long d'un arc.

Corollaire 18.2.20 (Dérivée partielle de composées)

Soit f une fonction de classe C^1 sur un ouvert U de \mathbb{R}^2 , φ et ψ deux fonctions de classe C^1 sur un ouvert V de \mathbb{R}^2 , à valeurs réelles, et telles pour tout $X \in V$, $(\varphi(X), \psi(X)) \in U$. Alors la fonction $(u, v) \mapsto f(\varphi(u, v), \psi(u, v))$ est de classe C^1 sur V, et :

$$\begin{cases} \frac{\partial}{\partial u} f(\varphi(u,v),\psi(u,v)) &= \frac{\partial f}{\partial x} (\varphi(u,v),\psi(u,v)) \frac{\partial \varphi}{\partial u} (u,v) + \frac{\partial f}{\partial y} (\varphi(u,v),\psi(u,v)) \frac{\partial \psi}{\partial u} (u,v) \\ \frac{\partial}{\partial v} f(\varphi(u,v),\psi(u,v)) &= \frac{\partial f}{\partial x} (\varphi(u,v),\psi(u,v)) \frac{\partial \varphi}{\partial v} (u,v) + \frac{\partial f}{\partial y} (\varphi(u,v),\psi(u,v)) \frac{\partial \psi}{\partial v} (u,v) \end{cases}$$

Quand on fixe une variable en un point X, on peut restreindre l'autre à un intervalle de sorte à se ramener à la règle de la chaîne.

Définition 18.2.21 (ligne de niveau)

La ligne de niveau de f de hauteur a est l'ensemble des points $(x,y) \in \mathbb{R}^2$ tels que f(x,y) = a. Autrement dit, il s'agit de $f^{-1}(\{a\})$.

Remarque 18.2.22 (Le gradient est orthogonal aux courbes de niveau)

Si γ est un arc parcourant une ligne de niveau de f (i.e. $f \circ \gamma$ est constante), alors

$$\langle \nabla f(\gamma(t)), \gamma'(t) \rangle = 0.$$

Ainsi, $\nabla f(\gamma(t))$ est orthogonal à $\gamma'(t)$, lui-même tangent à l'arc γ . En d'autres termes, le gradient est orthogonal aux lignes de niveau.

Définition 18.2.23 (Dérivée selon un vecteur u)

Soit u = (a, b) un vecteur de \mathbb{R}^2 et f une application de classe \mathcal{C}^1 sur un ouvert U. La dérivée de f en $X = (x, y) \in U$ selon le vecteur u est la dérivée en 0 de la fonction $t \mapsto f(X + tu)$, notée $D_u f(X)$.

Proposition 18.2.24 (Expression de la dérivée le long d'un vecteur avec ∇)

Avec les notations de la définition précédente, si f est de classe C^1 au voisinage de X,

$$D_u f(X) = \langle \nabla f(X), u \rangle = a \frac{\partial f}{\partial x}(X) + b \frac{\partial f}{\partial y}(X).$$

Il s'agit de dériver en 0 selon l'arc $\gamma: t \mapsto X + ut$.

Définition 18.2.25 (Dérivée directionnelle)

Si de plus u est unitaire (i.e. de norme 1), $D_u(f)$ est appelée dérivée directionnelle de f en X dans la direction de u.

Proposition 18.2.26 (interprétation de la direction de ∇f)

Pour u unitaire, $D_u f(X)$ est maximal lorsque u et $\nabla f(X)$ sont colinéaires de même sens. Ainsi, ∇f pointe vers la direction de plus forte pente.

Éléments de preuve.

C'est le cas d'égalité dans l'inégalité de Cauchy-Schwarz.

Théorème 18.2.27 (C^1 implique C^0)

Soit f une fonction de classe C^1 sur un ouvert U de \mathbb{R}^2 , à valeurs dans \mathbb{R} . Alors f est continue sur U.

Fixer $X \in U$ et $\varepsilon > 0$, et par continuité des dérivées partielles, majorer $\|\nabla f\|$ sur un voisinage de x. Utiliser alors l'IAF sur chacune des directions.

Notation 18.2.28 (Dérivées partielles d'ordre supérieur)

Chaque dérivée partielle de f est elle-même une fonction de 2 variables. Si elles admettent elles-mêmes des dérivées partielles, on les note :

$$\begin{cases} \frac{\partial^2 f}{\partial x^2}(x,y) &= \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial x}(x,y) \right) \\ \frac{\partial^2 f}{\partial y \partial x}(x,y) &= \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial x}(x,y) \right) \end{cases} \begin{cases} \frac{\partial^2 f}{\partial x \partial y}(x,y) &= \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y}(x,y) \right) \\ \frac{\partial^2 f}{\partial y^2}(x,y) &= \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial y}(x,y) \right) \end{cases}$$

Définition 18.2.29 (Classe C^2)

Une fonction définie sur un ouvert U de \mathbb{R}^2 , à valeurs réelles, est dite de classe \mathbb{C}^2 si et seulement si elle admet des dérivées partielles d'ordre 1 et 2 en tout point de U et que ces dérivées sont continues sur U.

On verra en exercice que si f est de classe \mathcal{C}^2 au voisinage de $(x,y) \in U$, alors

$$\frac{\partial^2 f}{\partial y \partial x}(x,y) = \frac{\partial^2 f}{\partial x \partial y}(x,y) \qquad \text{(Th\'eor\`eme de Schwarz)}.$$

II.4 Étude d'extrema

On termine ce paragraphe en montrant comment se servir des DL pour étudier les extrema d'une fonction de plusieurs variables.

Définition 18.2.30 (Extremum local, global)

Soit $f: D \to \mathbb{R}$ une application définie sur un sous-ensemble D de \mathbb{R}^2 , et $X_0 \in D$. On dit que f admet en X_0 un maximum :

- global si pour tout $X \in D$, $f(X) \leq f(X_0)$;
- local s'il existe $V \in \mathcal{V}(X_0)$ un voisinage de X_0 tel que pour tout $X \in V \cap D$, $f(X) \leq f(X_0)$.

Cette définition s'adapte pour le cas d'un minimum global ou local. On dit que f admet un extremum (local ou global) en X_0 si f admet un maximum ou un miunimum (local ou global) en X_0 .

Théorème 18.2.31 (CN pour un extremum local)

Soit f une fonction de classe C^1 sur un ouvert U de \mathbb{R}^2 . Alors si f admet un extremum local en $X_0 \in U$, $\nabla f(X_0) = 0$.

Définition 18.2.32 (Point critique)

On dit que X_0 est un point critique de f si $\nabla f(X_0) = 0$.

Ainsi, une CN pour que f admette un extremum local en X_0 est que X_0 soit un point critique de f. Comme pour les fonctions d'une variable, ce n'est pas une CS. Le même exemple vu à deux variables convient : $(x, y) \mapsto x^3$ en (0, 0).

Méthode 18.2.33

- Pour étudier l'existence d'un extremum local en un point critique X_0 , étudier le signe de $f(X_0 + H) f(X_0)$.
- Pour montrer que le signe n'est pas toujours le même localement, on pourra faire un DL à l'ordre 2 en ce point critique, puis étudier un changement de signe issu de la partie de degré
 2. On pourra, pour le rédiger rigoureusement, se ramener à une fonction d'une variable (en paramétrant une direction).
- On pourra éventuellement se servir d'une mise sous forme canonique par rapport à l'une des deux variables, pour essayer de mettre l'expression sous forme d'une différence de 2 carrés.

Exemple 18.2.34

Étude des extremas locaux de f définie sur $\mathbb{R}_{+}^{*} \times \mathbb{R}$ par

$$f(x,y) = x(\ln(x)^2 + y^2).$$

Il y a deux points critiques (1,0) et $(e^{-2},0)$. Le premier correspond à un minimum local (et même global), le deuxième ne correspond pas à un extremum local.

Avertissement 18.2.35

La positivité de la partie de degré 2 n'est pas suffisante à justifier l'existence d'un extremum local (voir exemple ci-dessous). La stricte positivité (sauf au point X_0) est suffisante, comme le montre la proposition suivant l'exemple.

Exemple 18.2.36

Étudier le point critique (0,0) de $f(x,y) = (x-y)^2 - x^4$

Le résultat suivant s'adapte facilement au cas des maxima.

Proposition 18.2.37 (CS sur le DL₂ pour un extremum local)

Si f admet au voisinage de (0,0) un DL_2 tel que

$$f(X_0 + H) = f(X_0) + ah^2 + bhk + ck^2 + o(\|H\|^2)$$
 où $H = \begin{pmatrix} h \\ k \end{pmatrix}$,

et tel que pour tout $(h, k) \neq (0, 0)$, $ah^2 + bhk + ck^2 > 0$, alors f admet un minimum local en X_0

Écrire $o(\|H\|^2)$ sous la forme $\alpha(h, k)$, et traduire par ε et voisinage la contrainte sur $\alpha(h, k)$. Considérer

$$g(H) = \frac{ah^2 + bhk + ck^2}{\|H\|^2},$$

et constater que $g(H)=g\left(\frac{H}{\|H\|}\right)$. Remarquer ensuite que g admet un minimum sur la sphère unité (car?...) et conclure par ε .

La démonstration ci-dessus est une adaptation de la démonstration générale de l'équivalence des normes en dimension finie (ici, avec la norme euclidienne canonique et l'application $H\mapsto ah^2+bhk+ck^2$, qui est aussi une norme euclidienne, comme on s'en convaincra facilement).