DM nº 20 : DL - Polynômes

Suggestion de travail supplémentaire (à ne pas me rendre): Le problème 16 de la sélection : très joli problème de géométrie polynomiale. Il s'agit d'étudier des propriétés de l'image réciproque d'un disque de rayon 2 par un polynôme unitaire.

Problème 1 – Soit $\lambda \in \mathbb{R}$. On étudie les polynômes P(X) à coefficients réels tels que :

$$(X^{2} - 1)P''(X) + 4XP'(X) = \lambda P(X). \tag{1}$$

Partie I - Propriétés des solutions de (1)

Soit P(X) une solution non nulle de (1), de degré noté n.

- 1. Montrer que $\lambda = n(n+3)$.
- 2. Soit $Q(X) = (-1)^n P(-X)$. Montrer que Q(X) est solution de (1).
- 3. En étudiant le degré du polynôme P(X) Q(X), prouver que P(X) = Q(X). En déduire la parité de P(X) en fonction de n.

Inversement, on se propose de prouver qu'étant donné un entier $n \ge 0$, il existe un polynôme $P_n(X)$ et un seul dont le terme de plus haut degré est X^n et tel que $P_n(X)$ soit solution de l'équation (1), avec le choix de $\lambda = n(n+3)$.

- 4. Déterminer $P_0(X)$, $P_1(X)$, $P_2(X)$.
- 5. Dans le cas général, on pose : $P_n(X) = \sum_{k=0}^{\left\lfloor \frac{n}{2} \right\rfloor} a_{2k} X^{n-2k}$, avec $a_0 = 1$.

Expliciter un système linéaire satisfait par les nombres a_{2k} , $k \in [0, \lfloor \frac{n}{2} \rfloor]$. Montrer que ce système admet une unique solution (que l'on ne demande pas d'expliciter)

6. Donner à l'aide des polynômes P_n , $n \in \mathbb{N}$, et selon les valeurs de λ , l'ensemble E_{λ} des solutions polynomiales de l'équation (1).

Partie II – Une relation de récurrence pour le calcul de P_n

On se propose d'établir que pour tout $n \ge 2$:

$$P_n(X) - XP_{n-1}(X) + \frac{n^2 - 1}{4n^2 - 1}P_{n-2}(X) = 0.$$
(2)

- 1. On considère, pour tout $n \ge 2$, $R_n(X) = (X^2 1)P'_n(X) nXP_n(X)$.
 - (a) Calculer $R'_n(X)$ en fonction de $P'_n(X)$ et de $P_n(X)$.
 - (b) Déterminer $(X^2 1)R''_n(X) + 4XR'_n(X)$ en fonction du polynôme $R_n(X)$ seulement.
 - (c) Montrer que $(X^2 1)P'_n(X) nXP_n(X) + \frac{n(n+2)}{2n+1}P_{n-1}(X) = 0$
- 2. Donner une relation entre $P'_n(X)$, $P'_{n-1}(X)$ et $P_n(X)$, et montrer finalement la relation (2).
- 3. Écrire une fonction Python prenant n en paramètre et retournant P_n (sous forme de liste des coefficients)

Problème 2 – (Développement asymptotique de la fonction Γ et formule de Stirling, d'après X 2015)

Ce problème a pour but de déterminer un développement asymptotique en $+\infty$ de la fonction Γ , définie par l'intégrale suivante :

$$\Gamma(x) = \int_0^{+\infty} t^{x-1} e^{-t} dt,$$

pour tout x en lequel cette intégrale est convergente. Cette fonction est une généralisation à \mathbb{R} des factorielles. À ce titre, on retrouve de la sorte la formule de Stirling, et même le terme suivant du développement asymptotique de la factorielle en $+\infty$.

• On admet le résultat suivant (intégrale de Gauss, calculée lors d'un exercice) :

$$\int_0^{+\infty} e^{-u^2} du = \frac{\sqrt{\pi}}{2}.$$

- On rappelle que si f est continue sur un intervalle]a,b], $\int_a^b f(t) dt$ est convergente ssi $\lim_{A \to a^+} \int_A^b f(t) dt$ existe dans \mathbb{R} , et cette limite est alors par définition égale à $\int_a^b f(t) dt$. Une définition similaire vaut pour la borne supérieure. Si on doit prendre la limite sur les deux bornes, il faut faire les deux passages à la limite indépendamment.
- On rappelle que si f et g sont deux fonctions positives et continues sur]a,b], et si $f \leq g$, la convergence de $\int_a^b g$ entraı̂ne celle de $\int_a^b f$; la conclusion est la même si f=o(g) et $f \sim g$. Une propriété symétrique est valable pour les fonctions continues sur [a,b[(b pouvant être $+\infty$).
- On rappelle également que si f est continue sur]a,b[, alors l'intégrale $\int_a^b f$ converge si et seulement s'il existe $c \in]a,b[$, tel que $\int_a^c f ET \int_c^b f$ convergent.
- Enfin, si f est une fonction continue sur]a,b] (ou [a,b[, ou]a,b[, les bornes pouvant être infinies) on dit que f est intégrable sur]a,b] si $\int_a^b |f|$ converge. On rappelle que l'intégrabilité de f entraı̂ne alors aussi la convergence de $\int_a^b f$.

Partie I – Autour de la fonction Γ

- 1. Justifier la convergence de l'intégrale $\int_{1}^{+\infty} e^{-\frac{t}{2}} dt$.
- 2. Déterminer les valeurs de $x \in \mathbb{R}$ pour les quelles l'intégrale $\int_0^1 t^{x-1} \mathrm{e}^{-t} \ \mathrm{d}t$ est convergente.
- 3. Déterminer le domaine de définition de la fonction Γ , c'est-à-dire l'ensemble des valeurs de x pour lesquelles l'intégrale définissant Γ est convergente.
- 4. Montrer que pour tout x > 0, $\Gamma(x+1) = x\Gamma(x)$. En déduire que pour tout $n \in \mathbb{N}$, $\Gamma(n+1) = n!$.
- 5. À l'aide d'un changement de variable (qu'on effectuera d'abord sur un intervalle [a,b] sur lequel l'intégrande est continue), montrer que $\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$

Partie II - Généralisation de la formule de Stirling

1. Montrer que pour tout y > 0, $\Gamma(y) = y^{-1} \int_{0}^{+\infty} e^{-t} t^{y} dt$, puis que

$$\Gamma(y) = e^{-y} y^y \int_{-1}^{+\infty} e^{-y\varphi(u)} du,$$

où φ est la fonction définie sur $]-1,+\infty[$ par $\varphi(u)=u-\ln(1+u).$

2. Montrer que φ induit par restriction une bijection $\varphi_-:]-1,0[\to]0,+\infty[$ et une bijection $\varphi_+:]0,+\infty[\to]0,+\infty[$. On notera φ_-^{-1} et φ_+^{-1} leurs bijections réciproques.

- 3. (a) Montrer que pour toute fonction f de classe C^n au voisinage de 0 telle que $\frac{f(x)}{x}$ admette une limite finie en 0, la fonction $x \mapsto \frac{f(x)}{x}$ se prolonge en 0 en une fonction de classe C^{n-1} au voisinage de 0 (on pourra se ramener au cas d'une fonction f dont toutes les dérivées en 0 sont nulles jusqu'à l'ordre n)
 - (b) Montrer que pour tout $n \in \mathbb{N}$ et toute fonction f de classe \mathbb{C}^n au voisinage de 0 dont le développement limité à l'ordre k (pour $k \in [1, n]$) au voisinage de 0 est donné par

$$f(x) = a_0 + a_1 x + \dots + a_k x^k + o(x^k),$$

la fonction définie par

$$g(x) = \frac{f(x) - (a_0 + a_1x + \dots + a_{k-1}x^{k-1})}{x^k}$$

se prolonge par continuité en 0 en une fonction de classe C^{n-k} au voisinage de 0.

- (c) Montrer que la fonction $\sqrt{\varphi}$ est définie sur $]-1,+\infty[$, et de classe \mathcal{C}^{∞} sur chacun des intervalles]-1,0] et $[0,+\infty[$ (mais les dérivées n-ièmes à gauche et à droite en 0 peuvent différer).
- 4. (a) Montrer que $\sqrt{\varphi}$ induit des bijections de]-1,0] sur $[0,+\infty[$ et de $[0,+\infty[$ sur $[0,+\infty[$. On note ψ_- et ψ_+ respectivement leurs réciproques.
 - (b) Justifier que ψ_- et ψ_+ sont de classe \mathcal{C}^{∞} sur leur domaine et exprimer φ_-^{-1} et φ_+^{-1} en fonction de ψ_- et de ψ_+ .
 - (c) Justifier que ψ_- et ψ_+ admettent des développements limités à tous ordres au voisinage à droite de 0. En se servant d'un développement de $\sqrt{\varphi}$, déterminer les développements à l'ordre 3 de ψ_- et ψ_+ .
 - (d) En déduire que lorsque x est au voisinage de 0, x > 0, on a :

$$\varphi_{+}^{-1}(x) = \sqrt{2x} + \frac{2x}{3} + \frac{x^{3/2}}{9\sqrt{2}} + o(x^{3/2})$$
 et $\varphi_{-}^{-1}(x) = -\sqrt{2x} + \frac{2x}{3} - \frac{x^{3/2}}{9\sqrt{2}} + o(x^{3/2}),$

ainsi que:

$$(\varphi_{+}^{-1})'(x) = \frac{1}{\sqrt{2x}} + \frac{2}{3} + \frac{\sqrt{x}}{6\sqrt{2}} + o(\sqrt{x}) \qquad \text{et} \qquad (\varphi_{-}^{-1})'(x) = -\frac{1}{\sqrt{2x}} + \frac{2}{3} - \frac{\sqrt{x}}{6\sqrt{2}} + o(\sqrt{x})$$

- 5. (a) Montrer que pour tout y > 0, $\Gamma(y) = e^{-y} y^y \int_0^{+\infty} e^{-yt} ((\varphi_+^{-1})'(t) (\varphi_-^{-1})'(t)) dt$
- *(b) En déduire que lorsque y tend vers $+\infty$.

$$\Gamma(y) = e^{-y} y^y \left(\frac{2\pi}{y}\right)^{\frac{1}{2}} \left(1 + \frac{1}{12y} + o\left(\frac{1}{y}\right)\right).$$

6. Retrouver la formule de Stirling à partir de cette égalité.

Problème 3 – Polynômes irréductibles sur \mathbb{F}_p .

Soit p un nombre premier, et soit $n \in \mathbb{N}^*$ un entier fixé. On note pour tout $k \in \mathbb{N}^*$, A(k) l'ensemble des polynômes irréductibles unitaires de degré k de $\mathbb{F}_p[X]$, et $I(k) = \operatorname{Card}(A(k))$. Le but de l'exercice est de donner une formule pour le calcul de I(n).

- 1. Soit d un diviseur de n et $P \in A(d)$.
 - (a) On définit la relation de congruence modulo P sur $\mathbb{F}_p[X]$ par $Q_1 \equiv Q_2$ [P] si et seulement si $Q_1 Q_2$ est divisible par P. Montrer que la relation de congruence est une relation d'équivalence.
 - (b) Soit \mathbb{K} le quotient de $\mathbb{F}_p[X]$ par la relation de congruence modulo P. Montrer que la somme et le produit de $\mathbb{F}_p[X]$ passent au quotient, et que \mathbb{K} muni de ces lois est un corps fini.

On note $\chi \in \mathbb{K}$ la classe d'équivalence du monôme X de $\mathbb{F}_p[X]$, et on identifie les éléments de \mathbb{F}_p aux classes d'équivalence des polynômes constants. Ainsi, on peut considérer que $\mathbb{F}_p \subset \mathbb{K}$, et en particulier, tout polynôme de $\mathbb{F}_p[X]$ peut être vu comme un polynôme de $\mathbb{K}[X]$.

(c) Montrer que P admet une racine dans \mathbb{K} , en tant que polynôme de $\mathbb{K}[X]$ (on donnera explicitement une racine de P).

(d) Montrer que \mathbb{K} est un espace vectoriel de dimension d sur \mathbb{F}_p , puis que

$$Card(\mathbb{K}) = p^d$$
.

- 2. Montrer que pour tout $x \in \mathbb{K}$, $x^{p^d} = x$. En considérant $P \wedge (X^{p^n} X)$, en déduire que P divise $X^{p^n} X$.
- 3. Nous établissons la réciproque :
 - (a) Montrer qu'il existe un corps \mathbb{K}' contenant \mathbb{F}_p tel que $X^{p^n}-X$ soit scindé sur \mathbb{K}' . Justifier que ses racines sont toutes simples.
 - (b) Soit \mathbb{F}_{p^n} le sous-ensemble de \mathbb{K}' constitué des racines de $X^{p^n} X$. Montrer que \mathbb{F}_{p^n} est un corps fini dont on précisera le cardinal, et que $\mathbb{F}_p \subset \mathbb{F}_{p^n}$.
 - (c) Soit P un facteur irréductible sur \mathbb{F}_p de $X^{p^n} X$, et \mathbb{K} et χ comme dans la question 1. Montrer que l'identification de χ à une racine x de P dans \mathbb{F}_{p^n} permet de considérer \mathbb{K} comme sous-corps de \mathbb{F}_{p^n} .
 - (d) En déduire que $d \mid n$.
- 4. Déduire des questions précédentes que :

$$\sum_{d|n} dI(d) = p^n \quad \text{puis:} \quad I(n) = \frac{1}{n} \sum_{d|n} \mu\left(\frac{n}{d}\right) p^d,$$

où μ est la fonction de Möbius, définie sur \mathbb{N}^* par :

$$\mu(n) = \begin{cases} 0 & \text{si } n \text{ admet dans sa décomposition un facteur premier de valuation au moins 2} \\ (-1)^k & \text{sinon,} \end{cases}$$

où k est le nombre de facteurs premiers distincts dans la décomposition primaire de n.