DM nº 22 : Balbutiements d'algèbre linéaire

Problème 1 – Complexifié d'un espace vectoriel sur $\mathbb R$

On rappelle que tout espace vectoriel sur $\mathbb C$ peut être considéré comme un espace vectoriel sur $\mathbb R$. On distinguera soigneusement, pour un $\mathbb C$ -espace vectoriel E, les notions de :

- sous-espace (pour la structure complexe)
- sous-espace $sur \mathbb{R}$ (pour la structure réelle)
- sous-espace réel (défini en 2)

Dans tout le problème, E désigne un espace vectoriel sur \mathbb{C} .

- 1. Vérifier que tout sous-espace de E est un sous-espace de E sur \mathbb{R} , et que la réciproque est fausse.
- 2. Soit F un sous-espace de E sur \mathbb{R} ; on note i F l'ensemble des vecteurs de la forme i x, pour x décrivant F: ainsi, i $F = \{i \mid x \mid x \in F\}$. On dit que F est un sous-espace réel si $F \cap i F = \{0\}$.
 - (a) Vérifier que i F est un sous-espace vectoriel de E sur \mathbb{R} .
 - (b) Montrer que i(i F) = F.
 - (c) Si F est de dimension finie, exprimer une base (sur \mathbb{R}) de i F en fonction d'une base (sur \mathbb{R}) donnée b_1, \ldots, b_n de F. Déterminer une relation entre $\dim(F)$ et $\dim(iF)$.
 - (d) Montrer que $F \cap iF$ est le plus grand sous-espace de E inclus dans F.
 - (e) Montrer que tout supplémentaire de $F \cap i F$ dans F est un sous-espace réel de E.
- 3. Soit ${\cal F}$ un sous-espace réel de ${\cal E}.$ Vérifier que :
 - (a) toute famille libre (sur \mathbb{R}) dans F est libre sur \mathbb{C} dans E.
 - (b) si $\dim_{\mathbb{C}} E = n$, on a $\dim_{\mathbb{R}} F \leq n$, avec égalité si et seulement si $E = F \oplus i F$.
- 4. Soit G un sous-espace de E de dimension finie. Montrer que G contient un sous-espace réel F vérifiant : $F \oplus \mathrm{i}\, F = G$. Un tel sous-espace est-il unique?
- *5. En utilisant l'axiome du choix, généraliser la question précédente au cas d'un sous-espace de dimension infinie.
- 6. Soit F un espace vectoriel sur \mathbb{R} quelconque.
 - (a) Vérifier qu'on définit une structure d'espace vectoriel complexe sur $F \times F$ par les opérations :

$$(x,y) + (x',y') = (x+x',y+y')$$
 et $(a+ib) \cdot (x,y) = (ax-by,bx+ay).$

On note $F_{\mathbb{C}}$ l'espace vectoriel ainsi obtenu. Cet espace est appelé le complexifié de F. On note encore F le sous-espace vectoriel sur \mathbb{R} de $F_{\mathbb{C}}$ consitué des éléments (x,0), pour $x \in F$.

- (b) Montrer que F est un sous-espace réel de $F_{\mathbb{C}}$.
- (c) Montrer que $F_{\mathbb{C}} = F \oplus i F$.
- (d) Un sous-espace réel de $F_{\mathbb{C}}$ est-il forcément un sous-espace sur \mathbb{R} de F?
- 7. Soit E un espace vectoriel sur \mathbb{C} (de dimension finie). Existe-t-il un espace vectoriel F sur \mathbb{R} tel que E soit isomorphe au complexifié de F?

Problème 2 – Polynôme minimal irréductible

On considère un espace vectoriel E sur un corps K. On admettra le théorème de la dimension : si E admet une base finie, alors toutes les bases de E sont finies et de même cardinal. Ce cardinal commun est par définition la dimension de E, qui est notée $\dim(E)$.

On admettra également que si F est un sous-espace vectoriel de E, alors $\dim(F) \leq \dim(E)$, et que l'égalité est alors vérifiée si et seulement si F = E.

On se donne f un endomorphisme non nul de E, et on suppose que f admet un polynôme annulateur $P \in \mathbb{K}[X]$ irréductible unitaire, dont on notera le degré d > 0.

Question préliminaire :

Montrer que $Ker(f) = \{0\}.$

Partie I - Polynôme minimal ponctuel

On appelle polynôme annulateur ponctuel de f en $x \in E$, un polynôme $Q = \sum_{i=0k} a_i X^i$ tel que

$$P(f)(x) = \sum_{i=0}^{k} a_i f^i(x_i) = 0,$$

où fⁱ désigne l'itérée de la composition.

Soit I le sous-ensemble de $\mathbb{K}[X]$ formé des polynômes annulateurs de f et, pour $x \in E$, J_x le sous-ensemble de $\mathbb{K}[X]$ formé des polynômes annulateurs ponctuels de f en x.

- 1. Montrer que I et J_x , pour $x \in E$, sont des idéaux de $\mathbb{K}[X]$.
- 2. En déduire l'existence de polynômes unitaires de degrés minimaux, Q et Q_x , tels que Q soit annulateur de f et Q_x soit annulateur ponctuel de f en x, et que Q (resp. Q_x) divise tout autre polynôme annulateur (resp. polynôme annulateur ponctuel en x) de f.
- 3. Montrer que Q = P
- 4. Montrer que pour tout $x \in E \setminus \{0\}, Q_x = P$.

Partie II - Endomorphisme induit

Soit F un sous-espace réduit à $\{0\}$ de E. On dit que F est stable par f si $f(F) \subset F$.

- 1. Montrer que si F est un sous-espace stable par f, alors f définit par restriction/corestriction un endomorphisme \tilde{f} (appelé endomorphisme induit par f sur F) et que tout polynôme annulateur de \tilde{f} est aussi polynôme annulateur de \tilde{f} .
- 2. Montrer que sous les conditions du problème, le polynôme minimal de \tilde{f} (i.e. polynôme annulateur non nul unitaire de plus petit degré) est P.

Partie III – Dimension de E

On suppose dans cette partie que E est de dimension finie.

- 1. Soit $e_1 \in E \setminus \{0\}$. Montrer que $(e_1, f(e_1), \dots, f^{d-1}(e_1))$ est une famille libre de E, et en déduire que $\dim(E) \ge d$. On note $E_1 = \text{Vect}(e_1, \dots, f^{d-1}(e_1))$.
- 2. Montrer que E_1 est stable par f.
- 3. On suppose que $E_1 \neq E$, et on considère $e_2 \in E \setminus E_1$. On note $E_2 = \text{Vect}(e_2, f(e_2), \dots, f^{d-1}(e_2))$.
 - (a) Montrer que $E_1 \cap E_2$ est stable par f.
 - (b) En considérant un polynôme annulateur de l'endomorphisme de $E_1 \cap E_2$ induit par f, en déduire que $E_2 \cap E_2 = \{0\}$.
 - (c) Montrer l'existence de vecteurs e_1, \ldots, e_k de E tels que

$$E = \bigoplus_{i=1}^{k} E_i,$$

où, pour tout $i \in [1, k], E_i = \text{Vect}(e_i, f(e_i), \dots, f^{i-1}(e_i)).$

4. Montrer que $\dim(E)$ est divisible par d, et en décrire une base à l'aide des vecteurs e_i (on justifiera la réponse).