DM nº 10 : Réduction

Ce DM est à rendre au format numérique, scanné en pdf en un seul fichier n'excédant pas 10 Mo. L'envoi se fera via Cahier-de-Prépa avant la date et heure ci-dessus.

Exercice 1 - (Exercice technique)

1. Les matrices suivantes sont-elles diagonalisables? Si oui les diagonaliser (on ne demande pas le calcul de P^{-1})

$$M_1 = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} \qquad M_2 = \begin{pmatrix} 1 & 1 \\ -1 & 3 \end{pmatrix} \qquad M_3 = \begin{pmatrix} 2 & -2 & 1 \\ 1 & -1 & 1 \\ 0 & 0 & 1 \end{pmatrix} \qquad M_4 = \begin{pmatrix} -2 & 3 & 2 \\ -1 & 1 & 1 \\ 0 & 1 & 0 \end{pmatrix} \qquad M_5 = \begin{pmatrix} 9 & -4 & -2 & 4 \\ 0 & 5 & 0 & 0 \\ 2 & -2 & 4 & 2 \\ 2 & -2 & -1 & 7 \end{pmatrix}$$

- 2. Déterminer une matrice N telle que $N^2 = M_5$.
- 3. Déterminer une matrice P_4 telle que $P_4^{-1}M_4P_4 = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix}$

Exercice 2 - (Racines d'une matrice)

- 1. Soit $M \in \mathcal{M}_n(\mathbb{R})$ une matrice diagonalisable.
 - (a) Montrer qu'il existe une matrice $N \in \mathcal{M}_n(\mathbb{C})$ telle que $N^2 = M$.
 - (b) Montrer qu'il existe une matrice $N \in \mathcal{M}_n(\mathbb{R})$ telle que $N^2 = M$ si et seulement si $\mathrm{Sp}(M) \subset \mathbb{R}_+$.
- 2. On suppose que $Sp(M) \subset \mathbb{R}_{+}^{*}$, et que χ_{M} est simplement scindé sur \mathbb{R} .
 - (a) Rappeler pour quoi ces hypothèses implique la diagonalisabilité de M. On se donne $P \in \mathrm{GL}_n(\mathbb{R})$ telle que $D = P^{-1}MP$ soit diagonale.
 - (b) Montrer que si N vérifie $N^2 = M$, alors NM = MN et N laisse stable les sous-espaces de M.
 - (c) En déduire que $P^{-1}NP$ est diagonale.
 - (d) Décrire, en fonction de P et des coefficients diagonaux de D, l'ensemble de toutes les matrices N telles que $N^2 = M$. Combien y en a-t-il?
- 3. Adapter l'argument précédent au cas où $\operatorname{Sp}(M) \subset \mathbb{R}$, $0 \in \operatorname{Sp}(M)$, et toujours χ_M simplement scindé.

Problème 1 - (CCINP MP - 2023)

Dans ce problème E est un \mathbb{C} -espace vectoriel de dimension finie.

Partie I -

1. Un exemple -

Vérifier que la matrice $A = \begin{pmatrix} 3 & 2 \\ 2 & 3 \end{pmatrix}$ est diagonalisable.

Démontrer que les matrices $\Pi_1 = \frac{1}{2}\begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}$ et $\Pi_2 = \frac{1}{2}\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$ sont des matrices de projecteur puis calculer $\Pi_1 + 5\Pi_2$, $\Pi_1 + \Pi_2$ et $\Pi_1\Pi_2$.

2. On rappelle le lemme de décomposition des noyaux : Si P_1, P_2, \ldots, P_r sont des éléments de $\mathbb{C}[X]$ deux à deux premiers entre eux de produit égal à T, si u est un endomorphisme de E alors :

$$\operatorname{Ker}[T(u)] = \operatorname{Ker}(P_1(u)) \oplus \operatorname{Ker}(P_2(u)) \oplus \ldots \oplus \operatorname{Ker}(P_r(u))$$

L'objet de cette question est de démontrer le cas particulier r=2.

Soit u un endomorphisme de E et soit P et Q deux polynômes premiers entre eux.

Justifier que $\operatorname{Ker}(P(u)) \subset \operatorname{Ker}[(PQ)(u)]$ (de même on a : $\operatorname{Ker}(Q(u)) \subset \operatorname{Ker}[(PQ)(u)]$).

Démontrer que : $Ker[(PQ)(u)] = Ker(P(u)) \oplus Ker(Q(u))$.

Dans la suite du problème, on pourra utiliser librement le lemme de décomposition des noyaux.

3. Soit u un endomorphisme de E et soit π_u son polynôme minimal. On suppose que $\pi_u = P_1^{k_1} P_2^{k_2}$ où les polynômes P_1 et P_2 sont premiers entre eux.

On pose, pour tout entier $i \in \{1, 2\}, Q_i = \frac{\pi_u}{P^{k_i}}$

Justifier qu'il existe deux polynômes R_1 et R_2 de $\mathbb{C}[X]$ tels que $R_1Q_1 + R_2Q_2 = 1$.

Pour la suite de cette partie, on notera $\pi_u = P_1^{k_1} P_2^{k_2} \dots P_m^{k_m}$ la décomposition en facteurs premiers du polynôme minimal et on admettra que, si pour tout entier $i \in \{1, 2, \dots, m\}$,

 $Q_i = \frac{\pi_u}{P_i k_i}$, il existe des polynômes de $\mathbb{C}[X]$ tels que $R_1 Q_1 + R_2 Q_2 + \ldots + R_m Q_m = 1$.

4. On pose alors pour tout entier $i \in \{1, 2, ..., m\}, p_i = R_i(u) \circ Q_i(u)$.

Démontrer que pour tout couple (i, j) d'entiers distincts de $\{1, 2, \dots, m\}$, on a les trois résultats suivants :

- $\bullet \quad p_i \circ p_j = 0,$
- $\bullet \sum_{i=1}^{m} p_i = id_E,$

et chaque p_i est un projecteur de E.

Les p_i seront appelés projecteurs associés à u.

5. Soit u un endomorphisme de E et soit χ_u son polynôme caractéristique : $\chi_u = \prod_{i=1}^m (X - \lambda_i)^{\alpha_i}$ (avec les λ_i deux à deux distincts et les α_i des entiers naturels non nuls) et pour tout entier $i \in \{1, 2, ..., m\}$, $N_i = \ker(u - \lambda_i i d_E)^{\alpha_i}$ le sous espace caractéristique associé à λ_i .

Justifier que $E = N_1 \oplus N_2 \oplus \ldots \oplus N_m$.

- 6. Démontrer que $E=\operatorname{Im} p_1\oplus\operatorname{Im} p_2\oplus\ldots\oplus\operatorname{Im} p_m$.
- 7. Démontrer que pour tout entier $i \in \{1, 2, ..., m\}$, Im $p_i = N_i$.

Partie II -

Dans toute cette partie, on suppose que l'endomorphisme u est diagonalisable et on note $\lambda_1, \lambda_2, \ldots, \lambda_m$ ses valeurs propres distinctes.

- 8. Quel est alors le polynôme minimal π_u de u?
- 9. On note toujours, pour tout entier $i \in \{1, 2, ..., m\}$, $Q_i = \frac{\pi_u}{P_i}$ où $P_i = X \lambda_i$, et on pose $\theta_i = \frac{1}{Q_i(\lambda_i)}$

Donner, sans détails, la décomposition en éléments simples de $\frac{1}{\pi_u}$ puis démontrer que les projecteurs associés $O_i(u)$

à u sont, pour tout entier $i \in \{1, 2, \dots, m\}, p_i = \frac{Q_i(u)}{Q_i(\lambda_i)}$.

- 10. Démontrer que $X = \sum_{i=1}^{m} \frac{\lambda_i Q_i(X)}{Q_i(\lambda_i)}$ puis que $u = \sum_{i=1}^{m} \lambda_i p_i$ (décomposition spectrale de u).

- (a) Justifier que la matrice A est diagonalisable et calculer la matrice A^2 .
- (b) En déduire le polynôme minimal π_A de la matrice A puis la décomposition spectrale de la matrice A. On notera Π_1 et Π_2 les matrices des projecteurs associés.
- (c) Calculer, pour tout entier naturel q, A^q en fonction des matrices Π_1 et Π_2 .
- 12. On note $\mathbb{C}[v]$ l'algèbre des polynômes d'un endomorphisme v d'un \mathbb{C} -espace vectoriel de dimension finie. Démontrer que la dimension de l'espace vectoriel $\mathbb{C}[v]$ est égal au degré du polynôme minimal π_v de l'endomorphisme v.
- v.

 13. On revient au cas u diagonalisable avec $\pi_u = \prod_{i=1}^m (X \lambda_i)$.

Démontrer que la famille (p_1, p_2, \dots, p_m) des projecteurs associés à u est une base de l'espace vectoriel $\mathbb{C}[u]$

- 14. Dans le cas d'un endomorphisme u non diagonalisable, la famille (p_1, p_2, \dots, p_m) des projecteurs associés à u est-elle toujours une base de l'espace vectoriel $\mathbb{C}[u]$?
- 15. Nous avons vu que si u est un endomorphisme de E diagonalisable, il existe m endomorphismes non nuls p_i de E, tels que pour tout entier q on ait $u^q = \sum_{i=1}^m \lambda_i^q p_i$.

Nous allons étudier une « réciproque».

Soit u un endomorphisme de E, \mathbb{C} -espace vectoriel de dimension finie. On suppose qu'il existe m endomorphismes non nuls f_i de E et m complexes $\lambda_1, \lambda_2, \ldots, \lambda_m$ distincts, tels que pour tout entier naturel q on ait $u^q = \sum_{i=1}^m \lambda_i^q f_i$. Démontrer que u est diagonalisable.

Problème 2 - Réduction de Jordan

Soit u un endomorphisme d'un \mathbb{C} -espace vectoriel de dimension finie n.

Soit $\mu_u = (X - \lambda_1)^{\alpha_1} \cdots (X - \lambda_k)^{\alpha_k}$ le polynôme minimal de u, les λ_i étant deux à deux distincts.

Le but du problème est de montrer qu'il existe une base $\mathcal B$ relativement à laquelle la matrice de u s'écrit par blocs :

$$\operatorname{Mat}_{\mathcal{B}}(u) = \begin{pmatrix} \boxed{J_1} & 0 & \cdots & 0 \\ 0 & \boxed{J_2} & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & \boxed{J_\ell} \end{pmatrix}, \text{ où tout bloc } J_\ell \text{ est de la forme } J_\ell = \begin{pmatrix} \lambda & 1 & 0 & \cdots & 0 \\ 0 & \lambda & 1 & \ddots & \vdots \\ 0 & 0 & \ddots & \ddots & 0 \\ \vdots & & \ddots & \ddots & 1 \\ 0 & \cdots & 0 & 0 & \lambda \end{pmatrix}$$

On notera au passage que la preuve permettrait de retrouver le théorème des noyaux itérés, indissociable de ce résultat.

Partie I – Réduction du problème

- 1. Soit, avec les notations de l'introduction, pour tout $i \in [1, k]$, $E_i = \text{Ker}((u \lambda_i \text{id})^{\alpha_i})$. Montrer que E_i est stable par u et $u \lambda_i \text{id}$.
- 2. Soit pour tout $i \in [1, k]$, u_i l'endomorphisme de E_i induit par u sur E_i . Justifier que si pour tout $i \in [1, k]$, \mathcal{B}_i est une base de E_i , et si \mathcal{B} est la base de E obtenue en juxtaposant dans cet ordre les bases, $\mathcal{B}_1, \mathcal{B}_2, \ldots, \mathcal{B}_k$, alors on a la représentation par blocs:

$$\operatorname{Mat}_{\mathcal{B}_1}(u_1) = \begin{pmatrix} & & & & & & & & & & & & & \\ & \operatorname{Mat}_{\mathcal{B}_2}(u_2) & & & & & & & & & \\ & & & \operatorname{Mat}_{\mathcal{B}_2}(u_2) & & \ddots & & & & & & \\ & \vdots & & \ddots & & \ddots & & & & & & \\ & \vdots & & \ddots & & \ddots & & & & & & \\ & 0 & & \cdots & & 0 & & & \operatorname{Mat}_{\mathcal{B}_k}(u_k) \end{pmatrix}.$$

- 3. Soit v_i l'endomorphisme de E_i induit par $u \lambda_i$ id sur E_i . Montrer que v_i est nilpotent.
- 4. Montrer que si tout endomorphisme nilpotent de tout C-ev de dimension finie admet une réduction de Jordan, alors tout endomorphisme de tout C-ev de dimension finie admet une réduction de Jordan.

Partie II - Réduction de Jordan d'un endomorphisme nilpotent

D'après la partie précédente, on peut donc se limiter à l'étude de la réduction de Jordan d'un endomorphisme nilpotent. Soit donc $u \in \mathcal{L}(E)$ un endomorphisme nilpotent.

- 1. Soit p l'indice de nilpotence de u, c'est-à-dire le plus petit entier positif tel que $u^p = 0$. En particulier, $u^{p-1} \neq 0$. Soit S un supplémentaire de $\operatorname{Ker}(u^{p-1})$ dans E. Soit x non nul dans S. Montrer que la famille $(u^{p-1}(x), u^{p-2}(x), \dots, u(x), x)$ est libre. On note F le sous-espace engendré par cette famille.
- 2. Montrer que F est stable par u.
- 3. Montrer que pour tout $k \in [1, p]$, on a $\operatorname{Ker}(u^{k-1}) \oplus \operatorname{Vect}(u^{p-k}(x)) \subset \operatorname{Ker}(u^k)$
- 4. Soit S_p un supplémentaire de $\operatorname{Ker}(u^{p-1}) \oplus \operatorname{Vect}(x)$ dans $\operatorname{Ker}(u^p)$. Montrer qu'il existe un supplémentaire S_{p-1} de $\operatorname{Ker}(u^{p-2}) \oplus \operatorname{Vect}(u(x))$ dans $\operatorname{Ker}(u^{p-1})$ contenant $u(S_p)$.
- 5. Montrer plus généralement qu'on peut construire une suite $(S_k)_{k \in [\![1,p]\!]}$, S_k étant un supplémentaire de $\operatorname{Ker}(u^{k-1}) \oplus \operatorname{Vect}(u^{p-k}(x))$ dans $\operatorname{Ker}(u^k)$, et tel que $u(S_{k+1}) \subset S_k$, pour tout $k \in [\![1,p-1]\!]$
- 6. Montrer que $T = S_1 + \cdots + S_p$ est un supplémentaire de F dans E, stable par u.
- 7. Terminer la preuve de l'existence d'une décomposition de Jordan, par récurrence.