of *strict* polynomial morphisms from V to W, defined to be the set $S^*(V^*) \otimes W$. An object of $\operatorname{Hom}_{pol}(V,W)$ defines a usual polynomial map from V to W.

DEFINITION 9

A strict polynomial functor P is the data of :

- a map $V \mapsto P(V)$ from objects of \mathcal{E}^f to objects of \mathcal{E}^f ;
- for each couple (V,W) of elements of \mathcal{E}^f , an strict polynomial morphism $P_{V,W}$ in $\operatorname{Hom}_{pol}(\operatorname{Hom}(V,W),\operatorname{Hom}(P(V),P(W)))$ such that
- $P_{V,V}(id_V) = id_{P(V)};$
- $(P_{V,W})$ are compatible with composition (in the usual sense).

Let \mathcal{P} be the category of strict polynomial functors (morphisms being natural transformations in the usual sense).

4

Link between ${\mathcal F}$ and unstable modules

DEFINITION 2

Define $\Delta: \mathcal{F} \to \mathcal{F}$ by $\Delta F: V \longmapsto \operatorname{Ker}(F(V \oplus \mathbb{F}_2) \to F(V))$.

Define the degree of $F \neq 0$ by saying that deg $F \leqslant n$ if and only if $\Delta^{n+1}F = 0$. One says that

- F is polynomial if deg F is finite (or F = 0),
- ${\cal F}$ is analytic if ${\cal F}$ is the colimit of its polynomial subfunctors.

Denote by

- \mathcal{U} the category of unstable modules over the Steenrod algebra \mathcal{A}_2
- $\mathcal{N}il$ the full subcategory of \mathcal{U} of nilpotent modules (i.e. such that for all x, there exists an integer N such that $\operatorname{Sq}_0^N x = 0$)
- \mathcal{F}_{ω} the full subcategory of \mathcal{F} of analytic functors.

Henn, Lannes and Schwartz proved the existence of an equivalence

$$\mathcal{U}/\mathcal{N}il \longrightarrow \mathcal{F}_{\omega}.$$

3

The category \mathcal{F} – Examples

DEFINITION 1

- \mathcal{E} : category of \mathbb{F}_2 -vector spaces
- \mathcal{E}^f : category of finite dimensional \mathbb{F}_2 -vector spaces
- ${\mathcal F}$: category of functors ${\mathcal E}^f \to {\mathcal E}$
- \mathcal{F}^f : full subcategory of *finite* functors, *i.e.* taking values in \mathcal{E}^f .

EXAMPLE

- $T^n:V\mapsto V^{\otimes n},$ n-th tensor power.
- $S^n:V\mapsto T^n(V)/\mathfrak{S}_n,$ n-th symmetric power.
- $\Lambda^n: V \mapsto S^n(V)/(x^2=0)$ (in char. 2!!!), n-th exterior power.
- $Id:V\mapsto V,$ the inclusion; $Id=T^1=S^1=\Lambda^1.$
- $-I(=I_{\mathbb{F}_2}):V\mapsto \mathbb{F}_2^{V^*}$, injective object. More generally:
- $-I_W: V \mapsto \mathbb{F}_2^{\operatorname{Hom}(V,W)}$, set of injective cogenerators of \mathcal{F} .
- For $F,G\in\mathcal{F},$ define $F\otimes G\in\mathcal{F}$ by $(F\otimes G)(V)=F(V)\otimes G(V).$
- If F,G are in $\mathcal{F},\,F\in\mathcal{F}^f,$ you can define $G\circ F.$

2

Some Ext-groups in categories of functors

Alain Troesch

22 March 2002

and Schwartz to compute $\text{Ext}(Id, S^n)$, using essentially the same tools. However, we need some more tools.

THEOREM 1

A comparison theorem between Ext-groups in $\mathcal P$ and Ext-groups in $\mathcal F$ when the left variable is Id. Ext-groups in one category completely determine Ext-groups in the other.

THEOREM 2

However not exact, the post-composition is almost exact, when dealing with $\operatorname{Ext}(Id,-)$ -groups.

Тиговем 3

A formula giving (for very special F and G) $\operatorname{Ext}^*(Id, G \circ F)$ knowing $\operatorname{Ext}^*(Id, F)$ and $\operatorname{Ext}^*(Id, G)$.

8

The main theorem

The main theorem consists in the computation of the groups $\operatorname{Ext}_{\mathcal{F}}^*(Id,S^n\circ S^m).$

Theorem 0

If n or m is not a power of 2, then $\operatorname{Ext}_{\mathcal{T}}^*(Id,S^n\circ S^m)$ is zero. Otherwise, let $n=2^k$ and $m=2^h$. The Poincaré series $\varphi_{h,k}(t)$ of $\operatorname{Ext}_{\mathcal{T}}^*(Id,S^{2^h}\circ S^{2^k})$ is given by :

$$\varphi_{h,k}(t) = \frac{1}{1 - t^{2^{h+k+1}}} \cdot \frac{\displaystyle\prod_{i=1}^{h+k} (1 - t^{2^i - 1})}{\displaystyle\prod_{i=1}^{h} (1 - t^{2^i - 1}) \cdot \displaystyle\prod_{i=1}^{k} (1 - t^{2^i - 1})}.$$

As we will see later, this implies the knowledge of similar Ext-groups in the category \mathcal{P} .

7

THE FROBENIUS TWIST

Definition 5

The Frobenius twist Tw is an object of \mathcal{P}_2 , defined on objects by Tw : $V \longmapsto V$, and on maps by

$$(\mathrm{Tw})_{V,W} = \sum (f_i^*)^2 \otimes f_i \in S^2(\mathrm{Hom}(V,W)^*) \otimes \mathrm{Hom}(V,W).$$

Definition 6

Let F be an object of \mathcal{P} .

- Define $F^{(1)}$ the first Frobenius twist of F to be $F \circ \operatorname{Tw}$.
- Define inductively $F^{(n)}$ to be $F^{(n-1)} \circ Tw$.

Remark

- If F is homogeneous of degree d, then $F^{(n)}$ is homogeneous of degree 2^nd
- As a usual functor, Tw is equal to the identity functor Id.
- Therefore, as usual functors, all $F^{(n)}$ are equal to F.

6

Injectives in \mathcal{P} – S-resolutions

Proposition 1 (Friedlander, Suslin)

The strict polynomial functors $S^{i_1} \otimes \cdots \otimes S^{i_k}$ give a set of injective cogenerators of \mathcal{P} . If one restricts to such functors satisfying $i_1 + \cdots + i_k = d$, one get a set of injective cogenerators of \mathcal{P}_d , the full subcategory of homogeneous functors of degree d.

Definition 4

Let F in \mathcal{P}_d . Let also denote F its image in \mathcal{F} .

- An S-resolution of F in P is an injective resolution constructed with the set of cogenerators described above: each term of the resolution is a direct sum of tensor products of symmetric powers, of total degree d.
- An S-resolution of F in \mathcal{F} is the image by the forgetful functor of an S-resolution in \mathcal{P} . It is NOT an INJECTIVE resolution.

5

category with enough injectives). Following Cartan and Eilenberg, we can construct an injective resolution $I^{\bullet \bullet}$ of the complex \mathcal{C}^{\bullet} , with good properties. Applying the functor $\operatorname{Hom}(T,-)$, we get a bicomplex $\operatorname{Hom}(T,I^{\bullet \bullet})$, which we can filter either horizontally or vertically. This give two spectral sequences $\mathbf{I}(T,\mathcal{C}^{\bullet})$ (first hypercohomology spectral sequence) and $\operatorname{II}(T,\mathcal{C}^{\bullet})$ (second hypercohomology spectral sequence) with the following properties:

- the two hypercohomogy spectral sequences have same abutment, since they are defined from filtrations of the same object. They of course do not define the same filtration on the abutment;
- $\mathbf{I}_{1}^{s,*}(T, \mathcal{C}^{\bullet}) = \operatorname{Ext}^{*}(T, \mathcal{C}^{s});$
- $\mathbf{II}_{2}^{*,t}(T, \mathcal{C}^{\bullet}) = \mathrm{Ext}^{*}(T, H^{t}(\mathcal{C}^{\bullet}));$
- differentials of rank r are of bidegree (r, 1 r).

12

A comparison theorem between ${\mathcal F}$ and ${\mathcal P}$

THEOREM 1

Let $F \in \mathcal{F}$ be the image by the forgetful functor of a functor, also denoted by F, in \mathcal{P}_n .

- If n is not a power of 2, then $\operatorname{Ext}_{\mathcal{F}}^*(Id, F) = 0$.
- If $n = 2^h$, then we have equalities of Yoneda modules:

$$\begin{split} \operatorname{Ext}^*_{\mathcal{P}}(Id^{(h+r)},F^{(r)}) &= \operatorname{Ext}^*_{\mathcal{P}}(Id^{(h)},F) \otimes \operatorname{Ext}_{\mathcal{P}}(Id^{(h+r)},S^{2^h(r)}), \\ \operatorname{Ext}^*_{\mathcal{F}}(Id,F) &= \operatorname{Ext}^*_{\mathcal{P}}(Id^{(h)},F) \otimes \operatorname{Ext}_{\mathcal{F}}(Id,S^{2^h}). \end{split}$$

11

Yoneda structures on $\operatorname{Ext}(Id, S^n)$

As a Yoneda algebra, $\operatorname{Ext}_{\mathcal{F}}^*(Id,Id)$ is generated by elements $e_\ell \in \operatorname{Ext}_{\mathcal{F}}^{2^\ell}(Id,Id), \, \ell > 0$, with commutativity relations, and $e_\ell^2 = 0$. As a Yoneda module $\operatorname{Ext}_{\mathcal{F}}^*(Id,S^{2^h})$ is the quotient of $\operatorname{Ext}_{\mathcal{F}}^*(Id,Id)$ by the ideal generated by e_1,\ldots,e_h .

The same holds for the Yoneda algebra $\operatorname{Ext}^*_{\mathcal{P}}(Id^{(r)},Id^{(r)})$ and the Yoneda modules $\operatorname{Ext}^*_{\mathcal{P}}(Id^{(r)},S^{2^h(r-h)})$, except that in this case, there are only generators e_ℓ for $\ell\leqslant r$.

Remark 2

A result of Friedlander and Suslin (generalized by Totaro in any characteristic and for more general functors) says that the projective dimension of $Id^{(r)}$ is $2^{r+1}-2$. Hence, $\operatorname{Ext}_{\mathcal{P}}^*(Id^{(r)},F)$ is always zero when $*>2^{r+1}-2$. Therefore one can see $\operatorname{Ext}_{\mathcal{P}}^*(Id^{(r)},F)$ as a module over $\operatorname{Ext}_{\mathcal{P}}^*(Id^{(r')}), Id^{(r')}), r'\geqslant r$, or over $\operatorname{Ext}_{\mathcal{P}}^*(Id,Id)$, by letting the action of e_ℓ , $\ell>r$ be trivial.

10

Calculations of $\operatorname{Ext}(Id, S^m)$

THEOREM 4 (FRANJOU, LANNES, SCHWARTZ)

If m is not a power of 2, $\operatorname{Ext}_{\mathcal{T}}^*(Id, S^m) = 0$. If $m = 2^h$, then:

$$\operatorname{Ext}^k_{\mathcal{F}}(Id,S^{2^h}) = \left\{ \begin{array}{ll} \mathbb{F}_2 & \text{if } k \equiv 0 \mod 2^{h+1}, \\ 0 & \text{otherwise}. \end{array} \right.$$

THEOREM 5 (FRIEDLANDER, SUSLIN) For any $r \ge h$,

 $\operatorname{Ext}^k_{\mathcal{P}}(Id^{(r)},S^{2^h(r-h)}) = \left\{ \begin{array}{ll} \mathbb{F}_2 & \text{if } k \equiv 0 \mod 2^{h+1}, \ k < 2^{r+1} \\ 0 & \text{otherwise}. \end{array} \right.$

Proposition 2

The square $S^{2^h} \to S^{2^{h+1}}$ induces a morphism of complexes $S^{\bullet}_{2^h} \to S^{\bullet}_{2^{h+1}}$, which induces inclusion on E_2 -terms of the spectral sequences. For all $k \geqslant h$ and $r \leqslant 2^h + 1$, we get an equality

$$\mathbf{II}_{r}^{*,*\leqslant 2^{h}}(Id,G\circ\mathcal{S}_{2h}^{\bullet}\circ F)=\mathbf{II}_{r}^{*,*\leqslant 2^{h}}(Id,G\circ\mathcal{S}_{2h}^{\bullet}\circ F).$$

The right handside for $r=2^h+1$ is also equal to the E_{∞} -term of the same spectral sequence.

Remark 3

The proposition also implies that the differential of rank $r\leqslant 2^h$ of the spectral sequence $\mathbf{II}(Id,G\circ\mathcal{S}^\bullet_{2^k}\circ F)$ are the same as those of $\mathbf{II}(Id,G\circ\mathcal{S}^\bullet_{2^h}\circ F)$.

16

The complexes \mathcal{S}_n^{\bullet}

Taking the homogeneous part of degree n of the complex \mathcal{S}^{\bullet} , we get a complex \mathcal{S}^{\bullet}_n :

$$S^{n} \longrightarrow \bigoplus_{\substack{i_{1}+i_{2}=n\\i_{1},i_{2}>0}} S^{i_{1}} \otimes S^{i_{2}} \longrightarrow \bigoplus_{\substack{i_{1}+i_{2}+i_{3}=n\\i_{1},i_{2},i_{3}>0}} S^{i_{1}} \otimes S^{i_{2}} \otimes S^{i_{3}} \longrightarrow \cdots \longrightarrow (S^{1})^{\otimes n},$$

whose cohomology is the homogeneous part of degree n of the cohomology of $\mathcal{S}^{\bullet}.$ Hence,

$$\mathbf{H}^{t}(\mathcal{S}_{n}^{\bullet}) = \bigoplus_{\substack{\sum_{\ell \geqslant 0} i_{\ell} = t \\ \sum_{\ell > 0} i_{\ell} 2^{\ell} = n}} \bigotimes_{\ell \geqslant 0} S^{i_{\ell}(\ell)}$$

18

The complex \mathcal{S}^{ullet}

Let $\mathcal{S}^{\bullet}(V)$ be the reduced cobar-construction of the coaugmented Hopf algebra $S^*(V)$. It defines a complex in the category \mathcal{P} :

$$S^{\bullet}: 0 \longrightarrow \overline{S^*} \longrightarrow \overline{S^*}^{\otimes 2} \longrightarrow \cdots \longrightarrow \overline{S^*}^{\otimes k} \longrightarrow \cdots,$$

where $\overline{S^*} = S^{*\geqslant 1}$.

A classical computation gives

$$\mathrm{H}^*(\mathcal{S}^{\bullet}) = \bigotimes_{h \geq 0} S^{*(h)}.$$

14

PIRASHVILI'S VANISHING THEOREM

THEOREM 6 (PIRASHVILI)

Let F and G be objects either of \mathcal{F} or of \mathcal{P} . Let A be an additive functor (for example A=Id in \mathcal{F} , or $A=Id^{(r)}$ in \mathcal{P}). Suppose moreover that F(0)=0=G(0). Then

$$\operatorname{Ext}^*(A, F \otimes G) = 0.$$

There exist generalizations of this fact when A is not additive any more. See Franjou, Friedlander, Suslin, Scorichenko.

9

13

A formula for $\operatorname{Ext}^*(Id, G \circ F)$

THEOREM 3

Let F and G be two homogeneous objects of \mathcal{P} , respectively of degree 2^h and 2^k . Let us also denote by F and G their image in \mathcal{F} . Let us assume that the module structures of $\operatorname{Ext}_{\mathcal{P}}^*(Id^{(h)},F)$ and $\operatorname{Ext}_{\mathcal{P}}^*(Id^{(k)},G)$ are trivial. Then we have an isomorphism of Yoneda modules

$$\begin{split} &\operatorname{Ext}_{\mathcal{P}}^*(Id^{(h+k)},G\circ F) = \\ &= \operatorname{Ext}_{\mathcal{P}}^*(Id^{(h)},F) \otimes \operatorname{Ext}_{\mathcal{P}}^*(Id^{(k)},G) \otimes \operatorname{Ext}_{\mathcal{P}}^*(Id^{(h+k)},S^{2^k}\circ S^{2^h}). \end{split}$$

Remark 4

According to the comparison theorem, this also gives a description of the Yoneda module $\operatorname{Ext}_{\mathcal{F}}^*(Id,G\circ F)$.

19

A description of the differentials of $\mathbf{II}(Id, \mathcal{S}_{2^k}^{\bullet} \circ S^h)$

Proposition 3

The differentials of the spectral sequence $\mathbf{II}(Id, \mathcal{S}_{2^k}^{\bullet} \circ S^{2^h})$ coming from the 2^k -th (upper) line are

- zero if their target is of first degree

$$s \equiv 0, 1, \dots, 2^{h+k} - 1 \mod 2^{h+k+1},$$

- surjective if their target is of first degree

$$s \equiv 2^{h+k}, \dots, 2^{h+k+1} - 1 \mod 2^{h+k+1}$$
.

Lemma 1

The elements e_1, \ldots, e_{h+k} of $\operatorname{Ext}_{\mathcal{F}}^*(Id, Id)$ act trivially on $\operatorname{Ext}_{\mathcal{F}}^*(Id, S^{2^k} \circ S^{2^h})$.

18

The post-composition is almost exact

THEOREM 2

Let P be a polynomial functor in \mathcal{F} , without constant term, i.e. P(0)=0. Let further $0\to F'\to F\to F''\to 0$ be a short exact sequence of finite functors without constant terms. Denote by H the cohomology at $P\circ F$ of the complex:

$$0 \longrightarrow P \circ F' \longrightarrow P \circ F \longrightarrow P \circ F'' \longrightarrow 0.$$

Then $\operatorname{Ext}_{\mathcal{F}}^*(Id, H) = 0$.

COROLLARY 1

Let P be a polynomial functor without constant term, and \mathcal{C}^{\bullet} a complex of finite objects of \mathcal{F} , all without constant term. Then, for all $n\geqslant 0$:

$$\operatorname{Ext}^*_{\mathcal{F}}(Id,H_n(P(\mathcal{C}^\bullet))) = \operatorname{Ext}^*_{\mathcal{F}}(Id,P(H_n(\mathcal{C}^\bullet))).$$