- 1 . v - v , n-th tensor power

 $-S^n:V\mapsto T^n(V)/\mathfrak{S}_n,$ n-th symmetric power

 $-\Lambda^n: V \mapsto T^n(V)/(x \otimes x = 0, x \otimes y = -y \otimes x), n$ -th exterior power

- Id: $V \mapsto V$, the identity; Id = $T^1 = S^1 = \Lambda^1$

- Tw : Frobenius twist, defined as : identity on objects, power p map on morphisms.

As a usual functor, Tw = Id

 $-F^{(1)}=F\circ \mathrm{Tw}, \text{ first Frobenius twist of } F$

– $F^{(n)} = F^{(n-1)} \circ Tw$, n-th Frobenius twist of F

 $T^n\!,S^n\!,\Lambda^n\!\in\!\mathcal{P}_n \qquad \mathrm{Id}\!\in\!\mathcal{P}_1 \qquad \mathrm{Tw}\!\in\!\mathcal{P}_p \qquad F\!\in\!\mathcal{P}_d\!\Rightarrow\! F^{(n)}\!\!\in\!\mathcal{P}_{p^nd}$

4

The category ${\mathcal P}$ of strict polynomial functors

p: a prime number

 \mathcal{E}^f : category of finite \mathbb{F}_p -vector spaces

DEFINITION (Friedlander, Suslin)

A strict polynomial functor P is:

- a map $V \mapsto P(V)$ from $Ob(\mathcal{E}^f)$ to $Ob(\mathcal{E}^f)$;
- for each pair (V, W) of objects of \mathcal{E}^f , a *strict* polynomial map from Hom(V, W) to Hom(P(V), P(W));

such that $P_{V,V}(id_V) = id_{P(V)}$ and the family $(P_{V,W})$ is compatible with composition (in the usual sense).

 \mathcal{P} : category of strict polynomial functors.

 \mathcal{P}_d : subcategory of *homogeneous* functors of degree d.

3

EXTENSIONS INVOLVING COMPOSED FUNCTORS

Alain Troesch

LAGA, Université Paris 13

2

MACLANE COHOMOLOGY WITH COEFFICIENTS IN COMPOSED FUNCTORS

Alain Troesch

LAGA, Université Paris 13

THEOREM

Let F and G be two homogeneous objects of \mathcal{P} , respectively of degree p^h and p^k . Let us assume that $\operatorname{Ext}^*_{\mathcal{P}}(\operatorname{Id}^{(h)}, F)$ and $\operatorname{Ext}^*_{\mathcal{P}}(\operatorname{Id}^{(k)}, G)$ have trivial module structure. Then we have an isomorphism of Yoneda modules

$$\operatorname{Ext}_{\mathcal{P}}^{*}(\operatorname{Id}^{(h+k+\ell)}, (G \circ F)^{(\ell)})$$

$$\mathrm{Ext}_{\mathcal{D}}^{*}(\mathrm{Id}^{(h)},F)\otimes\mathrm{Ext}_{\mathcal{D}}^{*}(\mathrm{Id}^{(k)},G)\otimes\mathrm{Ext}_{\mathcal{D}}^{*}(\mathrm{Id}^{(h+k+\ell)},(S^{p^{k}}\circ S^{p^{h}})^{(\ell)}),$$

where $Ext_{\mathcal{P}}^*(Id^{(h+k+\ell)},Id^{(h+k+\ell)})$ acts on the third factor of the tensor product.

8

AIM OF THE TALK

QUESTION

Does there exist a formula giving the module $\operatorname{Ext}^*_{\mathcal{D}}(\operatorname{Id}^{(?)}, G \circ F)$ in terms of the modules $\operatorname{Ext}^*_{\mathcal{D}}(\operatorname{Id}^{(?)}, F)$ and $\operatorname{Ext}^*_{\mathcal{D}}(\operatorname{Id}^{(?)}, G)$?

Remark

module = module over the algebra $\operatorname{Ext}_{\mathcal{P}}^*(\operatorname{Id}^{(?)},\operatorname{Id}^{(?)})$; product = Yoneda composition of extensions.

We give a formula for F and G satisfying a certain hypothesis. The general case is unknown.

7

Examples of Ext-groups in ${\cal P}$

THEOREM (Pirashvili's vanishing theorem)

Let F and G be such that F(0) = 0 = G(0), and A an additive functor. Then

$$\operatorname{Ext}_{\mathcal{P}}^*(A, F \otimes G) = 0.$$

THEOREM (Friedlander, Suslin, after Franjou, Lannes, Schwartz)

$$\operatorname{Ext}^k_{\mathcal{P}}(\operatorname{Id}^{(h+\ell)}, S^{p^h(\ell)}) = \left\{ \begin{array}{ll} \mathbb{F}_p & \text{if} \quad k \equiv 0 \mod 2p^h, \quad k < 2p^{h+\ell} \\ 0 & \text{otherwise.} \end{array} \right.$$

6

Injectives in \mathcal{P}

PROPOSITION (Friedlander, Suslin)

The strict polynomial functors $S^{i_1} \otimes \cdots \otimes S^{i_k}$ form a set of injective cogenerators of \mathcal{P} .

Such functors satisfying $i_1 + \cdots + i_k = d$ form a set of injective cogenerators of \mathcal{P}_d .

CONSEQUENCES

- 1. enough injectives \Longrightarrow existence of Ext-groups in $\mathcal P$
- 2. Each object F of \mathcal{P}_d admits an injective resolution the terms of which are direct sums of tensor products of symmetric powers, of total degree d.

1

5

Examples of functors satisfying the hypothesis (\mathcal{H})

12

MAIN INGREDIENT: POST-COMPOSITION IS ALMOST EXACT

THEOREM

Let $P \in \mathcal{P}_{p^h}$, and $0 \to F' \to F \to F'' \to 0$ a short exact sequence of objects of \mathcal{P}_{p^k} . Denote by H the cohomology at $P \circ F$ of:

$$0 \longrightarrow P \circ F' \longrightarrow P \circ F \longrightarrow P \circ F'' \longrightarrow 0.$$

Then $\operatorname{Ext}_{\mathcal{D}}^*(\operatorname{Id}^{(h+k)}, H) = 0.$

COROLLARY

Let $P \in \mathcal{P}_{p^h}$, and \mathcal{C}^{\bullet} a complex of objects of \mathcal{P}_{p^k} . Then,

$$\forall n, \ \mathrm{Ext}_{\mathcal{P}}^*(\mathrm{Id}^{(h+k)},\mathrm{H}^n(P(\mathcal{C}^\bullet))) = \mathrm{Ext}_{\mathcal{P}}^*(\mathrm{Id}^{(h+k)},P(\mathrm{H}^n(\mathcal{C}^\bullet))).$$

11

A SKETCH OF THE PROOF

10

COMMENTS ON THE FORMULA

Remark

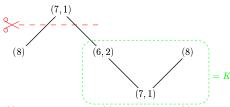
The functors F and G are requested to satisfy the same hypothesis which we will call (\mathcal{H}) :

Hypothesis (H) for $F \in \mathcal{P}_{p^h}$: The module structure of $\operatorname{Ext}^*_{\mathcal{P}}(\operatorname{Id}^{(h)}, F)$ is trivial.

REMARK

The modules $\operatorname{Ext}_{\mathcal{D}}^*(\operatorname{Id}^{(h+k+\ell)}, (S^{p^k} \circ S^{p^h})^{(\ell)})$ are unknown unless p=2. In this case it appears in fact as a consequence of the formula, as we will see later.

Idea : Representation theory of the symmetric groups gives the structure of $\Lambda^6 \otimes \Lambda^2$:



 $\operatorname{Ext}_{\mathcal{P}}^{*+1}(\operatorname{Id}^{(3)}, S_{(7,1)}) = \operatorname{Ext}_{\mathcal{P}}^{*}(\operatorname{Id}^{(3)}, \Lambda^{8}) \oplus \operatorname{Ext}_{\mathcal{P}}^{*}(\operatorname{Id}^{(3)}, K)$, and each of the two right terms have trivial module structure because their total dimension is 1.

16

Examples among simple objects

PROPOSITION

The Schur functors $W_{(2^h-1,1)}$ =Ker $(\Lambda^{2^h-1}\otimes\Lambda^1\to\Lambda^{2^h})$ satisfy (\mathcal{H}) .

Idea: Using the short exact sequence defining $W_{(2^h-1,1)}$, one shows that the total dimension of $\operatorname{Ext}_{\mathcal{P}}^*(\operatorname{Id}^{(h)},W_{(2^h-1,1)})$ is 1, hence the module structure cannot be non-trivial.

PROPOSITION

The simple object $S_{(3,1)}$ satisfies (\mathcal{H}) .

Idea: $\Lambda^2 \circ \Lambda^2 \cong \Lambda^4 \oplus S_{(3,1)}$.

15

THEOREM

The Poincaré series of $\operatorname{Ext}_{\mathcal{D}}^*(\operatorname{Id}^{(i_1+\cdots+i_k)}, S^{2^{i_k}} \circ \cdots \circ S^{2^{i_1}})$ is:

$$\varphi_{i_1,\dots,i_k}(t) = \frac{\prod\limits_{i=1}^{i_1+\dots+i_k} (1-t^{2^i-1})}{\prod\limits_{i=1}^{i_1} (1-t^{2^i-1}) \cdots \prod\limits_{i=1}^{i_k} (1-t^{2^i-1})}.$$

It is a polynomial of degree $d < 2^{i_1 + \dots + i_k + 1}$.

14

Compositions of symmetric powers

In the following examples, p = 2.

PROPOSITION

The compositions $S^2 \circ S^{2^h}$, $h \ge 0$, satisfy the hypothesis (\mathcal{H}) , i.e. the module structure of $\operatorname{Ext}_{\mathcal{P}}^*(\operatorname{Id}^{(h+1)}, S^2 \circ S^{2^h})$ is trivial.

COROLLARY

The functors $S^{2^{i_k}} \circ \cdots \circ S^{2^{i_1}}$ also satisfy the hypothesis (\mathcal{H}) .

Corollary \Longrightarrow description of $\operatorname{Ext}_{\mathcal{D}}^*(\operatorname{Id}^{(i_1+\cdots+i_k)}, S^{2^{i_k}} \circ \cdots \circ S^{2^{i_1}})$ (induction on k and i_k , using the hypercohomology spectral sequences of the reduced Cobar construction of S^*)

FURTHER EXAMPLES

PROPOSITION

The Schur functors $W_{(6,2)}$ and $W_{(5,3)}$ and the simple functor $S_{(6,2)}$ satisfy (\mathcal{H}) .

QUESTION

Do all Schur and simple objects satisfy (\mathcal{H}) ? If not, which ones do?