THE CATEGORY \(\mathcal{P} \) OF STRICT POLYNOMIAL FUNCTORS

\(p \) : a prime number

\(\mathcal{E}' \) : category of finite \(\mathbb{F}_p \)-vector spaces

Definition (Friedlander, Suslin)

A **strict polynomial functor** \(P \) is:

- a map \(V \mapsto \mathcal{P}(V) \) from \(\text{Ob}(\mathcal{E}') \) to \(\text{Ob}(\mathcal{E}') \);
- for each pair \(\{ V, W \} \) of objects of \(\mathcal{E}' \), a **strict** polynomial map from \(\text{Hom}(V, W) \) to \(\text{Hom}(\mathcal{P}(V), \mathcal{P}(W)) \);

such that \(P_V(id_V) = id_{\mathcal{P}(V)} \) and the family \(\{ P_V, W \} \) is compatible with composition (in the usual sense).

Theorem

Let \(F \) and \(G \) be two homogeneous objects of \(\mathcal{P} \), respectively of degree \(p^k \) and \(p^l \). Let us assume that \(\text{Ext}^{2k}_{\mathcal{P}}(Id^{p^k}, F) \) and \(\text{Ext}^{2l}_{\mathcal{P}}(Id^{p^l}, G) \) have trivial module structure. Then we have an isomorphism of Yoneda modules

\[\text{Ext}^{2k}_{\mathcal{P}}(Id^{(2k+l)}(F), G) \cong \text{Ext}^{2l}_{\mathcal{P}}(Id^{(2l)}(G), F) \]

where \(\text{Ext}^{2k}_{\mathcal{P}}(Id^{(2k+l)}(F), G) \) acts on the third factor of the tensor product.

AIM OF THE TALK

Question

Does there exist a formula giving the module \(\text{Ext}^{2k}_{\mathcal{P}}(Id^{p^k}, G \circ F) \) in terms of the modules \(\text{Ext}^{2k}_{\mathcal{P}}(Id^{p^k}, F) \) and \(\text{Ext}^{2k}_{\mathcal{P}}(Id^{p^k}, G) \)?

Remark

- module over the algebra \(\text{Ext}^{2k}_{\mathcal{P}}(Id^{p^k}, Id^{p^k}) \);
- product = Yoneda composition of extensions.

We give a formula for \(F \) and \(G \) satisfying a certain hypothesis. The general case is unknown.

EXAMPLES OF EXT-GROUPS IN \(\mathcal{P} \)

Theorem (Pirashvili’s vanishing theorem)

Let \(F \) and \(G \) be such that \(F(0) = 0 = G(0) \), and \(A \) an additive functor. Then

\[\text{Ext}^{2k}_{\mathcal{P}}(A, F \circ G) = 0. \]

Theorem (Friedlander, Suslin, after Franjou, Lannes, Schwartz)

\[\text{Ext}^{2k}_{\mathcal{P}}(Id^{(2k+t)}, S^{p^k}(t)) = \begin{cases} \mathbb{F}_p & k \equiv 0 \mod 2p^t, \quad k < 2p^{t+1} \\ 0 & \text{otherwise}. \end{cases} \]

INJECTIVES IN \(\mathcal{P} \)

Proposition (Friedlander, Suslin)

The strict polynomial functors \(S^{i_1} \odot \cdots \odot S^{i_k} \) form a set of injective cogenerators of \(\mathcal{P} \).

Such functors satisfying \(i_1 + \cdots + i_k = d \) form a set of injective cogenerators of \(\mathcal{P}_d \).

CONSEQUENCES

1. enough injectives \(\Rightarrow \) existence of Ext-groups in \(\mathcal{P} \)
2. Each object \(F \) of \(\mathcal{P}_d \) admits an injective resolution the terms of which are direct sums of tensor products of symmetric powers, of total degree \(d \).
EXAMPLES OF FUNCTORS SATISFYING THE HYPOTHESIS (H)

MAIN INGREDIENT: POST-COMPOSITION IS ALMOST EXACT

THEOREM
Let $P \in \mathcal{P}_p$, and $0 \to F' \to F \to F'' \to 0$ a short exact sequence of objects of \mathcal{P}_p. Denote by H the cohomology at $P \circ F$ of:

$$0 \to P \circ F' \to P \circ F \to P \circ F'' \to 0.$$ Then $\text{Ext}^*_p(\text{Id}^{[b+k]}, H) = 0$

COROLLARY
Let $P \in \mathcal{P}_p$, and \mathcal{C}^* a complex of objects of \mathcal{P}_p. Then:

$$\forall n, \text{Ext}^*_p(\text{Id}^{[b+k]}, H^n(P(\mathcal{C}^*))) = \text{Ext}^*_p(\text{Id}^{[b+k]}, H^n(P(\mathcal{C}^*))).$$

A SKETCH OF THE PROOF

EXAMPLES AMONG SIMPLE OBJECTS

PROPOSITION
The Schur functors $W_{[2^i-1,1]}$ satisfy (H).

Idea: Using the short exact sequence $W_{[2^i-1,1]}$ defines $W_{[2^i-1,1]}$, one shows that the total dimension of $\text{Ext}^*_p(\text{Id}^{[b]}, W_{[2^i-1,1]})$ is 1, hence the module structure cannot be non-trivial.

PROPOSITION
The simple object $S_{[3,1]}$ satisfies (H).

Idea: $\Lambda^2 \circ \Lambda^2 \cong \Lambda^4 \oplus S_{[3,1]}$.

THEOREM
The Poincaré series of $\text{Ext}^*_p(\text{Id}^{[b_1+\ldots+b_k]}, S^{2^{i_1}} \circ \ldots \circ S^{2^{i_k}})$ is:

$$\varphi_{i_1,\ldots,i_k}(t) = \frac{\prod_{i=1}^{i_k} (1-t^{2^{i-1}})}{\prod_{i=1}^{i_1} (1-t^{2^{i-1}}) \cdot \ldots \cdot \prod_{i=1}^{i_k} (1-t^{2^{i-1}})}.$$ It is a polynomial of degree $d < 2^{i_1+\ldots+i_k+1}$.

COMPOSITIONS OF SYMMETRIC POWERS

In the following examples, $p = 2$.

PROPOSITION
The compositions $S^{2^i} \circ S^{2^i}$, $h \geq 0$, satisfy the hypothesis (H), i.e.

The module structure of $\text{Ext}^*_p(\text{Id}^{[b+1]}, S^{2^i} \circ S^{2^i})$ is trivial.

COROLLARY
The functors $S^{2^i} \circ \ldots \circ S^{2^i}$ also satisfy the hypothesis (H).

Remark: The module structure of $\text{Ext}^*_p(\text{Id}^{[i_1+\ldots+i_k]}, (S^{2^h} \circ S^{2^h})(t))$ are unknown unless $p = 2$. In this case it appears in fact as a consequence of the formula, as we will see later.

COMMENTS ON THE FORMULA

Remark
The functors F and G are requested to satisfy the same hypothesis which we will call (H):

Hypothesis (H) for $F \in \mathcal{P}_p$:

The module structure of $\text{Ext}^*_p(\text{Id}^{[b]}, F)$ is trivial.

Remark
The functors $S^{2^h} \circ \ldots \circ S^{2^i}$ also satisfy the hypothesis (H).
Further Examples

Proposition
The Schur functors $W_{[6,3]}$ and $W_{[3,3]}$ and the simple functor $S_{[6,2]}$
satisfy (\mathcal{H}).

Question
Do all Schur and simple objects satisfy (\mathcal{H})?
If not, which ones do?