The Taylor tower of $S^n \circ I$ splits.

Applications to the calculation of $\operatorname{Ext}_{\mathcal{F}}^*(\operatorname{Id}, S^n \circ I)$, and (work in progress) of $\operatorname{Ext}_{\mathcal{F}}^*(\Gamma^d, S^n \circ I)$.

Calculation of $\operatorname{Ext}_{\mathcal{F}}^*(-,-)$ means :

- Determine the graded vector space, i.e. its Poincaré series.
- Determine its Yoneda module structure over Ext*_F(Id, Id) Product: Yoneda composition of extensions.

More general situation : $S^n \circ B$, where B is **boolean**.

Calculus in ${\mathcal F}$

Notation

$$\Delta F: V \longmapsto \operatorname{Ker} \Big(F(V \oplus \mathbb{F}_p) \to F(V) \Big)$$

Definition

F is of degree at most n iff $\Delta^{n+1}(F) = 0$.

Hence, one can define polynomial and analytic functors.

Definition

The n-th Taylor functor $t_n(F)$ is the greatest subobject of F of degree at most n.

Example

$$t_n(I) = S^0 \oplus \cdots \oplus S^n/(x^p = x).$$

The category \mathcal{F}

Definition

 $p\quad: {\bf a}\ {\bf prime}$

 \mathcal{E} : category of \mathbb{F}_p -vector spaces \mathcal{E}^f : category of finite \mathbb{F}_p -vector spaces

 \mathcal{F} : category of functors $\mathcal{E}^f \longrightarrow \mathcal{E}$

Examples

 $T^n : \mathcal{N}V^{\otimes n}$, n-th tensor power

 $S^n : VT^n(V)/\mathfrak{S}_n$, n-th symmetric power

 $\Gamma^n := VT^n(V)^{\mathfrak{S}_n}$, n-th divided power

 $\Lambda^n = VT^n(V)/(x \otimes x = 0, x \otimes y = -y \otimes x), n$ -th exterior power

 $\mathrm{Id} = T^1 = S^1 = \Gamma^1 = \Lambda^1$ ₩V, identity functor;

 p^{V^*} , injective object in \mathcal{F} , $I = S^*/(x^p = x)$

DECOMPOSITIONS OF COMPOSED FUNCTORS AND APPLICATIONS TO CALCULATIONS OF Ext-groups in functor categories

Alain Troesch

L.A.G.A., Université Paris 13

 $F \in \mathcal{P}$, homogeneous of degree d.

- If $d \neq p^h$, then $\operatorname{Ext}_{\mathcal{F}}^*(\operatorname{Id}, F) = 0$.
- If $d = p^h$, then $\operatorname{Ext}_{\mathcal{D}}^{* \geqslant 2p^h}(\operatorname{Id}^{(h)}, F) = 0$ and $\operatorname{Ext}_{\mathcal{F}}^*(\operatorname{Id}, F)$ is $2p^h$ -periodic; the first period is given by $\operatorname{Ext}_{\mathcal{P}}^*(\operatorname{Id}^{(h)}, F)$ One can also compare Yoneda module structures.

Remark

 $S^n \circ I$ is not in the image of \mathcal{P} by the forgetful functor, but the knowledge of $\operatorname{Ext}_{\mathcal{F}}^*(\operatorname{Id}, S^n \circ I)$ helps calculating $\operatorname{Ext}_{\mathcal{F}}^*(\operatorname{Id}, S^n \circ S^m)$

Deeper, but incomplete comparisons when first variable is not Id by Franjou, Friedlander, Suslin and Scorichenko.

Motivations – 2. Connections with GL_n -modules

Definition

Let \mathcal{P} denote the category of strict polynomial functors. It is defined the same way as \mathcal{F} except that the behaviour of $P \in \mathcal{P}$ on maps is strictly polynomial. It is homogeneous of degree d if each polynomial defining P on maps is homogeneous of degree d.

Theorem (Friedlander, Suslin)

If $P, Q \in \mathcal{P}$ are homogeneous of degree d, and $n \geqslant d$,

 $\operatorname{Ext}_{\mathcal{P}}^*(P,Q) = \operatorname{Ext}_{GL_n}^*(P(\mathbb{F}_p^n),Q(\mathbb{F}_p^n)).$

From Ext*(Id, S^n) and $G \hookrightarrow GL_n$ for every finite group scheme G:

Theorem (Friedlander, Suslin)

G a finite group scheme. $H^*(G, \mathbb{F}_p)$ is a finitely gen. algebra.

How to rise from \mathcal{F} -level to \mathcal{U} -level

The projection $\mathcal{U} \to \mathcal{U}/\mathcal{N}il$ admits a right adjoint. Therefore, one gets a localization functor $\ell: \mathcal{U} \to \mathcal{U}$.

There exists a localization spectral sequence:

 $E_2^{s,t} = \operatorname{Ext}_{\mathcal{U}}^s(M, \ell^t(N)) \Longrightarrow \operatorname{Ext}_{\mathcal{F}}^{s+t}(\overline{f}(M), \overline{f}(N)),$

where ℓ^t stands for the t-th derived functor of ℓ .

When M = F(n), it degenerates at rank 2, and : $\operatorname{Hom}_{\mathcal{U}}(F(n), \ell^*(N)) = \operatorname{Ext}_{\mathcal{F}}^*(\Gamma^n, \overline{f}(N))$

6

MOTIVATIONS - 1. Connections with unstable modules

 \mathcal{U} : category of unstable modules over the Steenrod algebra

 $\mathcal{N}il$: full subcategory of \mathcal{U} of nilpotent objects

 \mathcal{F}_{ω} : full subcategory of \mathcal{F} of analytic functors

Theorem (Henn, Lannes, Schwartz)

There exists a functor $\overline{f}:\mathcal{U}\longrightarrow\mathcal{F}$ inducing an equivalence of categories $f: \mathcal{U}/\mathcal{N}il \xrightarrow{\simeq} \mathcal{F}_{\omega}$. Explicitly, $\overline{f}(M)(V) = T_V(M)^0$.

Examples

- $\overline{f}(F(n)) = \Gamma^n$
- $\overline{f}(F(1)^{\otimes n}) = T^n$
- $\overline{f}(H^*W) = I_W = \mathbb{F}_p^{\operatorname{Hom}(-,W)}$
- $\overline{f}(H^*\mathbb{F}_n) = I$
- $\overline{f}(H^*(K(V, n))) = I_V \circ \Gamma^n$

Definition

A boolean functor in \mathcal{F} is an object $B \in \mathcal{F}$ together with an associative and commutative product $*: B \times B \longrightarrow B$ such that $x^{*p} = x$ for each $x \in B(V)$.

Notation

Two products in $S^* \circ B : xy$ will denote product in S^* whereas x * y will denote product in B. For example :

- $x_1 * \cdots * x_n$ opposed to $x_1 \cdots x_n$
- x^{*p} opposed to x^p
- x_J^* (product of x_i 's for $i \in J$) opposed to x_J
- etc.

Examples of $S(\lambda)$'s

- $S(1^n) = S^n$
- $S(1^{n-p}p)$ is generated by $x_1 \cdots x_{n-p}y^p$; $S(1^{n-p}p) = \operatorname{Ker}(S^n \to SR^n);$ Here, SR^n is the reduced symmetric power $S^n/(x^p=0)$.
- If $n = p^h$, then $S((p^{h-k})^{p^k}) = S^{p^k}$; Inclusion of S^{p^k} in S^{p^h} is given by power p^{h-k} .
- $n = \sum a_i p^i$, $0 \leqslant a_i < p$; $\underline{\lambda} = \prod (p^i)^{a_i}$; Then $S(\underline{\lambda})$ is contained in all others $S(\mu)$.

11

Subfunctors of S^n

Definition

p-adic partition of n: partition of the integer n whose parts are all powers of p.

Notation

Let $\underline{\lambda} = (\lambda_1, \dots, \lambda_\ell)$ be a *p*-adic partition of *n*. Denote by $S(\underline{\lambda})$ the subfunctor of S^n generated by elements $x_1^{\lambda_1} \cdots x_\ell^{\lambda_\ell}$.

Important fact (Troesch -?): The set of p-adic partitions of n is a poset : $\underline{\lambda} \leqslant \mu$ iff μ is refined by $\underline{\lambda}$. This poset is a **lattice**.

Proposition

$$S(\underline{\lambda}) \subset S(\underline{\mu}) \text{ iff } \underline{\lambda} \leqslant \underline{\mu},$$

 $S(\underline{\lambda}) \cap S(\mu) = S(\min(\underline{\lambda}, \mu))$

10

MOTIVATIONS - 3. Other related topics

1. Mac Lane cohomology

Jibladze and Pirashvili proved that if M is a vector space, then $\operatorname{Ext}_{\mathcal{F}}^*(\operatorname{Id}, -\otimes M)$ is equal to $\operatorname{HML}^*(\mathbb{F}_p, M)$. Therefore $\operatorname{Ext}_{\mathcal{F}}^*(\operatorname{Id}, F)$ generalizes Mac Lane cohomology groups.

This situation extands to the case \mathcal{F} is a functor category over R-modules, for any ring R. In this case, M has to be a bimodule.

2. Modular representation of the symmetric groups

 \mathcal{F}_{ω} has a filtration whose successive quotients are the categories of modular representations of \mathfrak{S}_n .

Corollary 1 (former result of Betley) k Poincaré series of $\operatorname{Ext}_{\mathcal{F}}^*(\operatorname{Id},S^{p^k}\circ I):\prod \frac{1}{1-t^{2^i-1}}$ Yoneda module structure : trivial.

Corollary 2

 $\operatorname{Ext}_{\mathcal{F}}^*(\operatorname{Id}, S^{p^k} \circ B) \stackrel{\operatorname{Yoneda}}{=} \operatorname{Ext}_{\mathcal{F}}^*(\operatorname{Id}, B) \otimes \operatorname{Ext}_{\mathcal{F}}^*(\operatorname{Id}, S^{p^k} \circ I)$ Module structure on the right hand side : from the first factor.

$$\begin{array}{l} \textbf{Corollary 3} \\ \textbf{Series of Ext}^*_{\mathcal{T}}(\mathrm{Id}, S^{p^h m} \circ \cdots \circ S^{p^h 1} \circ I) : & \prod_{i=1}^{h_1} \frac{1}{1 - t^{2^i - 1}} \cdots \prod_{i=1}^{h_m} \frac{1}{1 - t^{2^i - 1}} \\ \textbf{Yoneda module structure : trivial.} \end{array}$$

Main results – 2. Decomposition of $S^n \circ B$

Theorem (Troesch)

Let B be a boolean functor. The Taylor tower of S^n splits after composition by B, that is, $t_{m-1}S^n \circ B$ is a direct summand of

$$S^n \circ B = \bigoplus_{\underline{\lambda}} \bigotimes_{i \geqslant 0} SR^{\nu_i(\underline{\lambda})} \circ B,$$

where the sum is taken over all p-adic partitions of n

Similar (easier) result:

The Taylor tower of I also splits after composition by B. Hence :

$$I \circ B = \bigoplus_{n \geqslant 0} SR^n \circ B.$$

15

Main results – 1. Taylor filtration of S^n

Theorem

• $t_m(S^n) = \sum_{\underline{\lambda}} S(\underline{\lambda}),$

(the sum is taken over p-adic partitions of length $\ell \leq m$)

• $t_m(S^n)/t_{m-1}(S^n) = \bigoplus_{\underline{\lambda}} \bigotimes_{i\geqslant 0} SR^{\nu_i(\underline{\lambda})},$

(the sum is taken over p-adic partitions $\underline{\lambda}$ of length m, and $\nu_i(\lambda)$ stands for the number of parts of size p^i in λ)

• If
$$p = 2$$
, then $SR^n = \Lambda^n$, hence:

$$t_m(S^n)/t_{m-1}(S^n) = \bigoplus_{\underline{\lambda}} \bigotimes_{i \geqslant 0} \Lambda^{\nu_i(\underline{\lambda})}.$$

EXAMPLES OF BOOLEAN FUNCTORS

For p = 2, every functor factorizing through the category of boolean algebras is boolean.

Example

I is boolean: For $\Phi, \Psi: V^* \to \mathbb{F}_p$, $\Phi * \Psi(f) = \Phi(f) \cdot \Psi(f)$.

Example

If B is boolean, so is $\Gamma^n \circ B$. The product is induced by $(a_1 \otimes \cdots \otimes a_n, b_1 \otimes \cdots \otimes b_n) \rightarrow a_1 * b_1 \otimes \cdots \otimes a_n * b_n.$

Let $S^{p^{\infty}}$ be the colimit of $S^{p^k} \to S^{p^{k+1}}$. Then $S^{p^{\infty}}$ comes with a commutative, but not associative product satisfying $x^{*p} = x$.

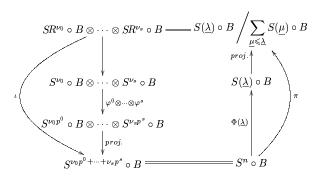
QUESTIONS AND REMARKS

- For which F's do Taylor towers of $F \circ B$ split? All F?
- I proved that, for $F, G \in \mathcal{P}$ homogeneous of degree p^h and p^k , s.t. $\operatorname{Ext}(\operatorname{Id}, F)$ and $\operatorname{Ext}(\operatorname{Id}, G)$ have trivial module structure : $\operatorname{Ext}^*_{\mathcal{P}}(\operatorname{Id}, G \circ F) = \operatorname{Ext}^*_{\mathcal{P}}(\operatorname{Id}, F) \otimes \operatorname{Ext}^*_{\mathcal{P}}(\operatorname{Id}, G) \otimes \operatorname{Ext}^*_{\mathcal{P}}(\operatorname{Id}, S^{p^k} \circ S^{p^h}).$

Compare with the formula for $\operatorname{Ext}_{\mathcal{F}}^*(\operatorname{Id}, S^n \circ B)$!

Is there some **more general formula** when $F,G\in\mathcal{F}$ do not lie in the image of \mathcal{P} , using $S^n\circ I$, $I\circ S^n$ or $I\circ I$ instead of $S^n\circ S^m$?

19



18

A POWERFUL TOOL: PIRASHVILI'S VANISHING THEOREM

Theorem (Pirashvili)

If F and G have no constant term, $\operatorname{Ext}_{\mathcal{F}}^*(\operatorname{Id}, F \otimes G) = 0$.

Corollary 1

If
$$n \neq p^h$$
, $\operatorname{Ext}_{\mathcal{F}}^*(\operatorname{Id}, S^n \circ F) = 0$.

Corollary 2

$$\begin{split} & \operatorname{Ext}_{\mathcal{F}}^*(\operatorname{Id}, F \circ \Lambda^n \circ G) = \operatorname{Ext}_{\mathcal{F}}^{*-n+1}(\operatorname{Id}, F \circ S^n \circ G) \\ & \operatorname{Ext}_{\mathcal{F}}^*(\operatorname{Id}, F \circ \Gamma^n \circ G) = \operatorname{Ext}_{\mathcal{F}}^{*-n+1}(\operatorname{Id}, F \circ \Lambda^n \circ G) \end{split}$$