TD 6 - Fonctions continues

Exercice 1 – Étudier la continuité des fonctions f suivantes:

$$a) \ f(x) = \left\{ \begin{array}{ll} x+1 & \text{si } x \in]-\infty, -1[, \\ -x-1 & \text{si } x \in [-1,0[, \\ x+1 & \text{si } x \in [0,+\infty[; \end{array}] \right. \qquad b) \ f(x) = \left\{ \begin{array}{ll} a \sin x + \cos x & \text{si } x \in]-\infty, \frac{\pi}{2}\big[\,, \\ \pi-x & \text{si } x \in \left[\frac{\pi}{2},\pi\right[\,, \\ \frac{x^2}{2} + b & \text{si } x \in [\pi,+\infty[.]] \right. \right.$$

Exercice 2 – Étudier la continuité des fonctions $f : \mathbb{R} \to \mathbb{R}$ suivantes:

a)
$$f(x) = E(x)\sin(\pi x);$$
 b) $f(x) = E(x)\sin x$ c) $f(x) = E(x) + \sqrt{x - E(x)}.$

Exercice 3 – Étudier la continuité des fonctions $f : \mathbb{R} \to \mathbb{R}$ suivantes:

- 1. f(x) = 1 si $x \in \mathbb{Q}$ et f(x) = 0 si $x \in \mathbb{R} \mathbb{Q}$;
- 2. $f(x) = x \text{ si } x \in \mathbb{Q} \text{ et } f(x) = 0 \text{ si } x \in \mathbb{R} \mathbb{Q};$
- 3. $f(x) = x \text{ si } x \in \mathbb{Q} \text{ et } f(x) = 1 x \text{ si } x \in \mathbb{R} \mathbb{Q};$
- 4. $f(x) = \frac{1}{q}$, où $x = \frac{p}{q}$ avec p et q premiers entre eux, si $x \in \mathbb{Q}$, et f(x) = 0 si $x \in \mathbb{R} \mathbb{Q}$.

Exercice 4 -

- 1. Donner un exemple d'application $f : \mathbb{R} \to \mathbb{R}$ discontinue en tout point de \mathbb{R} , et telle que |f| soit continue sur \mathbb{R} .
- 2. Donner un exemple d'application $f:[0,1] \to [0,1]$ bijective, et discontinue en tout point de [0,1].

Exercice 5 – Déterminer toutes les applications f dans chacun des cas suivants:

- 1. $f: \mathbb{R} \to \mathbb{R}$ continue, et $\forall (x, y) \in \mathbb{R}^2$, f(x + y) = f(x) + f(y).
- 2. $f: \mathbb{R} \to \mathbb{R}$ continue, et $\forall (x,y) \in \mathbb{R}^2$, $f\left(\frac{x+y}{2}\right) = \frac{f(x)+f(y)}{2}$.
- 3. $f: \mathbb{R} \to \mathbb{R}$ continue, et $\forall (x, y) \in \mathbb{R}^2$, f(x + y) = f(x)f(y).
- 4. $f: \mathbb{R}_+^* \to \mathbb{R}$ continue, et $\forall (x,y) \in (\mathbb{R}_+^*)^2$, f(xy) = f(x) + f(y).

Exercice 6 – Soit $f: \mathbb{R}_+^* \to \mathbb{R}$ une fonction continue sur \mathbb{R}_+^* . Montrer que si f(x+1) - f(x) tend vers ℓ lorsque x tend vers $+\infty$, alors $\frac{f(x)}{x}$ tend aussi vers ℓ .

Exercice 7 – Soit $f: \mathbb{R} \to \mathbb{R}$ une application surjective telle que pour tout $y \in \mathbb{R}$, $f^{-1}(y)$ est un sous-ensemble borné de \mathbb{R} . Montrer que f admet des limites infinies en $+\infty$ et $-\infty$, de signe opposé.

Exercice 8 – Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction périodique.

- 1. Montrer que si f n'est pas constante, alors f n'admet pas de limite en $+\infty$ et $-\infty$.
- 2. Montrer que si f est continue, alors f est bornée.

Exercice 9 – Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction continue telle que $\lim_{x \to +\infty} f(x) = \lim_{x \to -\infty} f(x) = +\infty$. Montrer que f admet une borne inférieure, et que celle-ci est atteinte.

Exercice 10 – Soit $f: \mathbb{R}^+ \longrightarrow \mathbb{R}^+$ une application continue telle que $\forall x > 0, f(x) < x$.

- 1. Montrer que f(0) = 0.
- 2. Montrer que pour tout 0 < a < b, il existe M < 1 tel que $f(x) \leq Mx$ sur [a, b].

Exercice 11 – Soit $f:[a,b] \to \mathbb{R}$ la fonction définie par $f(x)=(x-a)^2(x-b)^2$. Déterminer l'image de [a,b] par f.

Exercice 12 – Soit I un intervalle, et $f:I\to\mathbb{R}$ une fonction continue telle que $f(I)\subset\mathbb{Q}$. Montrer que f est constante.

Exercice 13 – Montrer qu'il n'existe pas de bijection continue de \mathbb{R}^* sur \mathbb{R} .

Exercice 14 – Soit $f:[a,b] \to [a,b]$ une fonction continue sur [a,b]. Montrer qu'il existe $c \in [a,b]$ tel que f(c) = c (autrement dit, f admet un point fixe).

Exercice 15 – Soit $f, g : [a, b] \to \mathbb{R}$, continues sur [a, b], telles que f(a) = g(b) et f(b) = g(a). Montrer qu'il existe $c \in [a, b]$ tel que f(c) = g(c).

Exercice 16 – Soit $f : \mathbb{R} \to \mathbb{R}$ tel qu'il existe $a \in \mathbb{R}$ tel que $f \circ f(a) = a$. Montrer qu'il existe $c \in \mathbb{R}$ tel que f(c) = c.

Exercice 17 – Soit $f:[0,1] \to \mathbb{R}$ une fonction continue telle que f(0) = f(1).

- 1. Montrer qu'il existe $c \in [0, \frac{1}{2}]$ tel que $f(c) = f(c + \frac{1}{2})$.
- 2. Soit $n \in \mathbb{N}$, $n \ge 2$. Montrer qu'il existe $c \in [0, 1 \frac{1}{n}]$ tel que $f(c) = f(c + \frac{1}{n})$.

Exercice 18 – Soit, pour $n \ge 1$, $P_n(x) = x^{n+1} + x^n - 1$.

- 1. Montrer que P_n admet une unique racine x_n dans \mathbb{R}^+ , et que $x_n \leq 1$.
- 2. Montrer que la suite $(x_n)_{n\geqslant 1}$ converge. Déterminer sa limite.

Exercice 19 – Soit $f: \mathbb{R}_+^* \to \mathbb{R}$ croissante telle que $g: x \mapsto \frac{f(x)}{x}$ est décroissante.

- 1. Montrer que f est continue sur \mathbb{R}_*^+ .
- 2. Montrer que si f n'est pas identiquement nulle, alors f ne s'annule pas.
- 3. Donner un exemple de telle fonction.

Exercice 20 – Soit $f: \mathbb{R}_+^* \to \mathbb{R}$ définie par $f(x) = x + \ln x$.

- 1. Montrer que f est un homéomorphisme de \mathbb{R}_+^* dans \mathbb{R} .
- 2. Soit ϕ sa bijection réciproque. Montrer que $\phi(t) \sim t$ en $+\infty$.
- 3. Montrer qu'en $+\infty$, $\ln(\phi(t)) = \ln(t) + o(\ln t)$, et $\ln(\frac{\phi(t)}{t}) = -\frac{\ln t}{t} + o(\frac{\ln t}{t})$.
- 4. En déduire que $\phi(t) = t \ln t + \frac{\ln t}{t} + o(\frac{\ln t}{t})$.

Exercice 21 – Montrer que $f: x \mapsto \sqrt{x}$ est uniformément continue sur \mathbb{R}_+^* .

Exercice 22 – Soit $f:[a,b[\to\mathbb{R}$ uniformément continue sur [a,b[. Montrer que f peut être prolongée par continuité en b.